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Introduction

Analytical geometry has no strictly defined contents. It 
is the method but not the subject under investigation, 
that constitutes the leading feature of this branch of 
geometry.

The essence of this method consists in that geometric 
objects are associated in some standard way;1 with equa­
tions (or systems of equations) so that geometric relations 
of figures are expressed through properties of their equa­
tions.

For instance, in case of Cartesian coordinates any 
straight line in the plane is uniquely associated with a 
linear equation

ax -f- by +  c = 0.

The intersection of three straight lines at one point is 
expressed by the condition of compatibility of a system 
of three equations which specify these lines.

Due to a multipurpose approach to solving various 
problems, the method of analytic geometry has become 
the leading method in geometric investigations and is 
widely applied in other fields of exact natural sciences, 
such as mechanics and physics.

Analytical geometry joined geometry with algebra 
and analysis —the fact which has told fruitfully on 
further development of these three subjects of mathe­
matics.
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The principal ideas of analytical geometry are traced 
back to the French mathematician, Rene Descartes 
(1596-1650), who in 1637 described the fundamentals of 
its method in his famous work “Geometrie”.

The present book, which is a course of lectures, treats 
the fundamentals of the method of analytic geometry as 
applied to the simplest geometric objects. It is designed 
for the university students majoring in physics and 
mathematics.



Chapter 1

Rectangular Cartesian Coordinates 
in a Plane

Sec. i-1. Introducing Coordinates in a Plane
Let us draw in the plane two mutually perpendicular 

intersecting lines Ox and Oy which are termed coordinate 
axes (Fig. 1). The point of intersection O of the two axes is 
called the origin of coordinates, or simply the origin. It

divides each of the axes into two semi-axes. One of the 
semi-axes is conventionally called positive (indicated by an 
arrow in the drawing), the other being negative.

Any point A in a plane is specifiedfby a^pair of numbers— 
called the rectangular coordinates of the point A—the 
abscissa (x) and the ordinate (y) according to the follow­
ing rule.

Through the point A we draw a straight line parallel to 
the axis of ordinates {Oy) to intersect the axis of abscissas
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(Ox) at some point A x (Fig. 2). The abscissa of the point 
A should be understood as a^number x whose absolute val­
ue is equal to the distance from 0  to A x which is positive 
if A x belongs to the positive semi-axis and negative if A x 
belongs to the negative semi-axis. If the point A x coincides 
with the origin, then we put x equal to zero.

1(y

II I

( -  +) (+r+)

o'
( + . - )

Ill IV

Fig. 3.

The ordinate (y) of the point A is determined in a simi­
lar way.

We shall use the following notation: A (x, y) which 
means that the coordinates of the point A are x (abscissa) 
and y (ordinate).

The coordinate axes separate the plane into four right 
angles termed the quadrants as shown in Fig. 3. Within 
the limits of one quadrant the signs of both coordinates 
remain unchanged. As we see in the figure, the quadrants 
are denoted and called the first,[second, third, and fourth 
as counted anticlockwise beginning with the quadrant in 
which both coordinates are positive.

If a point lies on the x-axis (i.e. on the axis of abscis­
sas) then its ordinate y is equal to zero; if a point'jlies on 
the y-axis, (i.e. on the axis of ordinates), then its abscissa 
x is zero. The abscissa and ordinate of the origin (i.e. of 
the point O) are equal to zero.

The plane on which the coordinates x and y are intro­
duced by the above jnethod will be called the xy-plane. An
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arbitrary point in this plane with the coordinates x and 
y will sometimes be denoted simply (x, y).

For an arbitrary pair of real numbers x and y there exists 
a unique point A in the xy-plane for which x will be its 
abscissa and y its ordinate.

Indeed, suppose for definiteness x >  0, and y < 0 .  
Let us take on the positive semi-axis x a point A x at the

Fig. S.

distance x from the origin O, and a point A v on the negative 
semi-axis y at the distance | y | from 0. We then draw 
through the points A x and A y straight lines parallel to the 
axes y and x, respectively (Fig. 4). These lines will inter­
sect at a point A whose abscissa is obviously x, and ordi­
nate is y. In other cases (x <  0, y >  0; x >  0, y > 0  and 
x <  0, y <  0) the proof is analogous.

Let us consider several important cases of analytical 
representation of domains on the xy-plane with the aid of 
inequalities. A set of points of the xy-plane for which 
x > a  is a half-plane bounded by a straight line passing 
through the point (a, 0) parallel to the axis of ordinates 
(Fig. 5, a). A set of points for which a <  x <; b represents 
the intersection (i.e. the common portion) of the half­
planes specified by the inequalities a < ix  and x  <  b. 
Thus, this set is a band between the straight lines paral­
lel to the y-axis and passing through the points (a, 0) 
and (b, 0) (Fig. 5, b). A set of points for which a <  x <  b, 
c <  y <  d is a rectangle with vertices at points (a, c), 
(a, d), (b, c), (b, d) (Fig. 5, c).
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*SFIn][conclusion, let us solve the following problem: Find 
the area of a triangle with vertices at points A x (,x1? yA,

equal to x3—xv  Therefore, 

SiB .A .A  3B3) = \

a 2 (Xfr y2)* ^3 y3)- Let 
the [triangle be located rela­
tive to the coordinate sys­
tem fas is shown in Fig. 6. 
In this position its area is 
equal to the difference be­
tween thejarea of the trape­
zium B ^A ^^B 3 and the sum 
of the areas of the trapezia 
B1A 1A2B 2 and B^A^AqB^  

The bases of the trape­
zium ByAxA^B^ are equal to 
yx and j/3, its altitude being 

the area of the trapezium

The areas of two other trapezia are found analogously:

5 (BiAiAzBz) =  — (yz +  yt) (x2 — xt),

6 {^zA2A3B^) =  y  (2/3 +  2̂) (#3 — Xz) •

The area of the triangle AiA2AB:
I

s  (̂ 4^ 2̂ 13) = "2" (1/3 ~\~y i) (^3—^i)—
1 1

" { y *  +  y 1) (x2—xi)~~2 (y*+ ,=
1

= Y  (̂ 22/3— y sx i + sty* — yzx3+ xsVt—y 1̂ 2) •

This formula can be rewritten in a more convenient 
form:

S (AiA^As) =  j  {(yB — yt) (x2 — xt) — (y2 — yt) (x3 — xt)}.

Though the above formula for computing the area of 
the triangle has been derived for a particular location of
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the triangle relative to the coordinate system, it yields 
a correct result (to within a digit) for any position of the 
triangle. This will be proved later on (in Sec. 2-5).

EXERCISES

1. What is the location of the points of the #i/-plane for 
which (a) | x | =  a, (6) | x | =  | y |?

2. What is the location of the points of the zy-plane 
for which (a) | x | <  a, (b) \ x \ <C a, \ y | <  6?

3. Find the coordinates of a point symmetrical to the 
point A (x, y) about the £-axis (y-axis, the origin).

4. Find the coordinates of a point symmetrical to the 
point A (,x, y) about the bisector of the first (second) 
quadrant.

5. How will the coordinates of the point A (x , y) change 
if the y-axis is taken for the #-axis, and vice versa?

6. How will the coordinates of the point A (x, y) change 
if the origin is displaced into the point A 0 (x0, y0) 
without changing the directions of the coordinate axes?

7. Find the coordinates of the mid-points of the sides 
of a square taking its diagonals for the coordinate axes.

8. It is known that three points (xXi yj), (x2, y2), (,x3, y3) 
are collinear. How can one find out which of these points 
is situated between the other two?

Sec. 1-2. The Distance Between Points
Let there be given on the zy-plane two points: A± with 

the coordinates x^ y1 and with the coordinates x2, z/2. 
I t  is required to express the distance between the points A ± 
and A 2 in terms of their coordinates.

Suppose xx =7̂ xs and y1 ^  y2. Through the points A ± 
and A 2 we draw straight lines parallel to the coordinate 
axes (Fig. 7). The distance between the points A and A x 
is equal to | yr — y2 |, and the distance between the points 
A and ^42 is equal to | xx — x2 |. Applying the Pythagore­
an theorem to the right-angled triangle A XA A 2, we get

(xx — x2)2 +  {yx — y2)2 =  d2, (*)
where d is the distance between the points A x and A 2.
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Though the formula (*) for determining the distance 
between points has been derived by us proceeding from 
the assumption that xx x2, yx ^  y2, it remains true for 
other cases as well. Indeed, for xx =  #2, yx =̂= y2 d is 
equal to | | (Fig. 8). The same result is obtained
using the formula (*). For xx ^  x2, yx =  y2 we get a simi­

lar result. If xx = x2, yx =  y2 the points A x and A 2 coin­
cide and the formula (*) yields d =  0.

As an exercise, let us find the coordinates of the centre of 
a circle circumscribed about a triangle with the vertices 
fa , Vi), (*2> 0a). and (*8, ys). 3

Let (x, y) be the centre of the circumcircle. Since it 
is equidistant from the vertices of the triangle, we derive 
the following equations for the required coordinates of the 
centre of the circle (x and y). Thus, we have

(x — xxf  +  (y — yx)2 = (x — x2)* +  (y — y2)2,
(x — xt)2 +  (y — yx)* = (x — x3)2 +  (y — i/3)2,

or after obvious transformations
2(x2- x i)x-\-2 (y2 — yi)y  = xl + yl — x l - y l y
2 (̂ 3 — x1)x  +  2(y3 — yi)y  = xl + y l - x 21- y l .

Thus, we have a system of two linear equations for 
determining the unknowns x and y.
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EXERCISES

1. Find on the z-axis the coordinates of a point equi­
distant from the two given points A (xly yx), and 
B (x2, y2). Consider the case A (0? a), B (fc, 0).

2. Given the coordinates of two vertices A and B of an 
equilateral triangle ABC. How to find the coordinates of 
the third vertex? Consider the case A (0, a), B (a, 0).

3. Given the coordinates of two adjacent vertices A 
and B of a square ABCD. How are the coordinates of the 
remaining vertices found? Consider the case A (a, 0), 
B (0, 6).

4. What condition must be satisfied by the coordinates 
of the vertices of a triangle ABC so as to obtain a right- 
angled triangle with a right angle at the vertex C?

5. What condition must be satisfied by the coordinates 
of the vertices of a triangle ABC so that the angle A 
exceeds the angle B1

6. A quadrilateral ABCD is specified by [the coordi­
nates of its vertices. How to find out whether or not is it 
inscribed in a circle?

7. Prove that for any real a, ax, a2, 6, bv b2 there 
exists the following inequality

V  («i -  fl)2 +  (&1 -  W  +  V («3 -  a)2 +  (&2 -  b)* >

To what geometrical fact does it correspond?

Sec, 1-3. Dividing a Line Segment 
in a Given Ratio

Let there be given two different points on the xy-plane: 
A i (xly yx) and A 2 (#2, y2). Find the coordinates x and y 
of the point A which divides the segment A XA 2 in the ratio
K  ' K

Suppose the segment A XA 2 is not parallel to the x-axis. 
Projecting the points A v A, A 2 on the y-axis, we have
(Fig: 9)

AXA _ AXA _
^^2  AA2

2 - 0 4 0 6



18 Analytical Geometry

Since the points A x, A 2, A have the same ordinates as 
the points A x, A 2, A , respectively, we get

a xa  =  I yx — y

Consequently,

A A 2 =  I y — y2

1 vi—y 1 _  h.
I y—y2 I 2̂ #

Since the point A lies between Ax and A 2, yx — y and
y y2 have the same sign. 
Therefore

vi~yI v i — y I ________
I y — y2 1 y — y 2 ^ 2

Whence we find
_ +  ̂ 1̂ 2

If the segment A XA<
(*)
is

parallel to the #-axis, then
Vi =  2/2 =  V- 

The same result is yielded 
by the formula (*) which is 
thus true for any '"positions 
of the points A x and A 2. 

The abscissa of the point A is found analogously. For 
it we get the formula

_ 2̂*̂1 "4“ ̂ 1̂*2
+  X2

We put a =  Then = 1 — t.
Consequently, the coordinates of any point C of a segment 
with the end-points A (^j, yx) and B {x2, y2) may be 
represented as follows
X =  (1 — t) x x +  t x 2, y =  (1 — t) yx +  ty2, 0 <  t <  1.

Let us find the location of points C {x, y) for t <  0 
and t >  1. To do this in case of £ <  0 we solve our for-
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mulas with respect to xx, yx. We get
l»3g +  ( — t )x 2 

i —t f

y 1 = i-y + (—*) 
l —*

Hence, it is clear that the point A (ar1? yx) is situated on 
the line segment CB and divides this segment in the ratio 
(—£): 1. Thus, for t <  0 our 
formulas yield the coordi­
nates of the point lying on the 
extension of the segment AB  
beyond the point A. It is 
proved in a similar way that 
for t >  1 the formulas yield 
the coordinates of the point 
located on the extension of 
the segment AB  beyond the 
point B.

As an exercise, let us B c:b {
prove Ceva’s theorem from 
elementary geometry. It Fig- 10 •
states: If the sides of a triangle
are divided in the ratio a : 6, c : a, b : c, taken in order of 
moving round the triangle (see Fig. 10), then the segments 
joining the vertices of the triangle to the points of division 
of the opposite sides intersect in one point

Let A (xx, i/i), B (£2, ^ 2)Land C (x3, y3) be the vertices 
of the triangle and A, B, C the points of division of the 
opposite sides (Fig. 10). The coordinates of the point A are:

___b*%-rcx3 ____by2 +  cy3
X ~ ~ + c  ’ lJ~ " T + c  *

Let us divide the line segment AA  in the ratio (b +  c) : a. 
Then the coordinates of the point of division will be

ax1 + bx2 + cx3 
a+6+c *

7. ayi +  by2 +  cy3
y a { - b + c  •

2*
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If the segment BB is divided in the ratio (a +  c) : fc, 
then we get the same coordinates of the point of division. 
The same coordinates are obtained when dividing the 
segment CC in the ratio (a +  b) : c. Hence, the segments 
A A y BB , and CC have a point in common, which was 
required to be proved.

Let us note here that the theorems of elementary geome­
try on intersecting medians, bisectors, and altitudes in the 
triangle are particular cases of Ceva’s theorem.

EXERCISES

1. Given the coordinates of three vertices of a paral­
lelogram: (xx, yx), (x2, y2)> and (x 3 i */s)* Find the coordi­
nates of the fourth vertex and the centroid.

2. Given the coordinates of the vertices of a triangle: 
(xx, yi)i (x 2 i 1/2)* and 0*3, #3)- Find the coordinates of the 
point of intersection of the medians.

3. Given the coordinates of the mid-points of the sides 
of a triangle (xx, yx), (,x2, y2), and (x3l y3), Find the coor­
dinates of its vertices.

4. Given a triangle with the vertices (xx, yx), (x2, y2), 
and 0r3, y3). Find the coordinates of the vertices of a homo- 
thetic triangle with the ratio of similitude X and the 
centre of similitude at point {x0, yQ).

5. Point A is said to divide the line segment A XA 2 
externally in the ratio Xx : X2 if this point lies on a straight 
line joining the points A x and A 2 outside the segment 
A XA 2 and the ratio of its distances from the points A x 
and i 2 is equal to : A2. Show that the coordinates of 
the point A are expressed in terms of the coordinates 
(xn yi)> (̂ 2) ^2) of the points A x and A 2 by the formulas

_^2X1 — ̂ 1X2 ..  2̂̂ 1 1̂̂ 2

6. Two line segments are specified by the coordinates 
of their end-points. How can we find out, without using 
a drawing, whether the segments intersect or not?

7. The centre of gravity of two masses and p2 situated 
at points A x (xv yj) and A 2 (x2, y2) is defined as a point A 
which divides the segment A XA 2 in the ratio p2 : px.
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Thus, its coordinates are:
x =  1*1*1+ 1*8*2 v ^ 1  +  ̂ 2  

P1 +  P2 ’ y M*i ~T M*2 ’
The centre of gravity of n masses \it situated at points A t 

is determined by induction. Indeed, if A'n is the centre 
of gravity of the first n — 1 masses, then the centre of 
gravity of all n masses is determined as the centre of 
gravity of two masses: pn located at point A n, and 
px +  • • • +  situated at point A'n . We then derive 
the formulas for the coordinates of the centre of gravity 
of the masses p* situated at points A t (xh yt):

x » » » +  \*>TlXn w __ P1I/1+ ♦ »♦ +̂ 71̂ 71
P l+ -“ +P7i ’ y Pl+**-+P/l *

Sec. 1-4. The Notion of the Equation of a Curve.
The Equation of a Circle

Let there be given a curve on the #z/-plane (Fig. 11). 
The equation cp (x, y) = 0 is called the equation of a curve 
in the implicit form if it is satisfied by the coordinates

(,x, y) of any point of this curve and any pair of numbers 
x , */, satisfying the equation (p (#, y) = 0 represents the 
coordinates of a point on the curve. As is obvious, a curve 
is defined by its equation, therefore we may speak of 
representing a curve by its equation.
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In analytic geometry two problems are often considered: 
(1) given the geometrical properties of a curve, form its 
equation; (2) given the equation of a curve, find out its 
geometrical properties. Let us consider these problems as 
applied to the circle which is the simplest curve.

Suppose that A 0 (x0l y0) is an arbitrary point of the 
xy-plane, and R  is any positive number. Let us form the 
equation of a circle with centre A 0 and radius R (Fig. 12).

Let A (x , y) be an arbitrary point of the circle. Its 
distance from the centre A 0 is equal to R. According to 
Sec. 1-2, the square of the distance of the point A from 
A 0 is equal to (x — x0)2 +  (y y0)2. Thus, the coordi­
nates x, yoi any point A of the circle satisfy the equation 

(x — x0)2 +  (y — y0Y — R2 =  0. (*)
Conversely, any point A whose coordinates satisfy the 

equation (*) belongs to the circle, since its distance from 
A 0 is equal to R.

In conformity with the above definition, the equation (*) 
is an equation of a circle with centre A 0 and radius R.

We now consider the second problem for the curve 
given by the equation

x2 +  y2 +  2<u -f- 2by -f- c =  0 (a2 -f b2 — c >  0).
This equation can be rewritten in the following 

equivalent form:
(x +  a)2 +  (y +  b)2-  ( V a2 +  62- c ) 2 =  0.

Whence it is seen that any poiut (x , y) of the curve i 
found at one and the same distance equal to Y a ?  Ar  b 2 —c 
from the point (—a, —&), and, hence, the curve is a circle 
with centre (—a, —b) and radius \/  a2-\-b2 — c.

Let us consider the following problem as an example 
illustrating the application of the method of analytic 
geometry: Find the locus of points in a plane the ratio of 
whose distances from, two given points A and B is constant 
and is equal to k 1. (The locus is defined as a figure 
which consists of all the points possessing the given 
geometrical property. In the case under consideration we 
speak of a set of all the points in the plane for which the
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ratio of the distances from the two given points A and B 
is constant).

Suppose that 2a is the distance between the points A 
and B . We then introduce a rectangular Cartesian coordi­
nate system on the plane taking the straight line AB  for 
the ar-axis and the midpoint of the segment AB  for the 
origin. Let, for definiteness, the point A be situated on 
the positive semi-axis x. The coordinates of the point A 
will then be: x =  a, y =  0, and the coordinates of the 
point B will be: x =  — a, y =  0. Let (x, y) be an arbitra­
ry point of the locus. The squares of its distances from 
the points A and B are respectively equal to (x — a)2 -f- 
+  y2 and (x -f a)2 -f- y2. The equation of the locus is 

(x _ a)2+ v 2
(x +  a)* +  y * - *  ’

or
x2 +  y2 +  2^ 1- )- ax+  a,2 = 0.

The locus represents a circle (Apollonius’ circle).
Let us consider another problem as an example of 

forming the equation of a circle. Given are the equations 
of two circles

x2 + y2 + arx +  b^y +  c1 =  0, 
x2 + y2 +  + b2y +  c2 =  0

and a point A (xly yx). Form the equation of a circle passing 
through the points of intersection of the given circles and 
the point A .

The usual solution of this problem consists in that we 
determine the points of intersection of the given circles 
and then find the equation of the circle passing through 
the found points of intersection and the given point A . 
Let us consider a more “economical’’̂] way of solving 
this problem.

For any X and p the equation
X (,x2 + y2 +  a^x +  bxy -f ct) +  p (x2+ y2+ a2x-I-

+  1)$ c2) ~

represents a circle if X 4- p =7̂ 0. This circle passes 
through the points of intersection of the given circles,
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since the coordinates of these points reduce to zero both 
terms of the left-hand side of the equation. If we select 
X, (x so that the coordinates of the point A satisfy this 
equation, then we shall get the required circle. As is 
obvious, the following choice will suit

^ y\ +  &2Xi +  ^2^1 +  C2 9
— 11 = *1+yl + aixi + btyt + ci.

Geometrically, it is clear that the problem has no solution 
if the point A lies on the straight line joining the points 
of intersection of the given circles. Analytically, it is 
expressed by the fact that the equation obtained does not 
contain the term x2 +  y2.

EXERCISES

1. What peculiarities in the position of the circle
x 2  +  V2  +  2a# +  2by - f  c =  0 {a2  +  b2  — c >  0)

relative to the coordinate system take place if 
(1) a =  0; (2) b =  0; (3) c =  0; (4) a =  0, b =  0; 

(5) a =  0, c — 0; (6) b =  0, c =  0?
2. Show that if we substitute in the left-hand member 

of the equation of a circle the coordinates of any point 
lying outside the circle, then the square of the length of 
a tangent drawn from this point to the circle is obtained.

3. The power of a point A with reference lo a circle is 
defined as the product of the segments of a secant drawn 
through the point A taken with plus for outside points 
and with minus for inside points. Show that the left- 
hand member of the equation of a circle x 2  +  y2  -f  
+  2ax -f 2by +  c =  0 gives the power of this point 
with reference to a circle when the coordinates of an 
arbitrary point are substituted in it.

4. Form the equation of the locus of points of the 
a;y-plane the sum of whose distances from two given points 
Fx (c, 0) and F2 (—-c, 0) is constant and is equal to 2a (the 
ellipse). Show that the equation is reduced to the form
-5 +  |s  =  1. where b2 =  a2 — c2r
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5. Form the equation of the locus of points of the xy- 
plane the difference of whose distances from two given 
points Fx {c, 0) and F2 (—c, 0) is constant and is equal to 
2a (the hyperbola). Show that the equation is reduc 'd lo
the form — — — =  1, where b2 =  c2 — a \  a3 o2

6. Form the equation of the locus of points of the xy- 
plane which are equidistant from the point F (0, p) and 
the a:-axis (the parabola).

Sec. 1-5. The Equation of a Curve 
Represented Parametrically

Suppose a point A moves along a curve, and by the 
time t its coordinates are: x =  q> (t) and y =  if (I). A sys­
tem of equations

X =  <P (t), y =  \|> (*),

specifying the coordinates of 
an arbitrary point on the 
curve as functions of the param­
eter t is called the equation 
of a curve in parametric form.

The parameter t is not 
necessarily time, it may be 
any other quantity charac­
terizing the position Tof a 
point on the curve.

Let us now form the equ­
ation of a circle in para­
metric form.

Suppose the centre of a circle is situated at the origin, 
and the radius is equal to R. We shall characterize the 
position of point A on the circle by the angle a  formed 
by the radius OA with the positive semi-axis x (Fig. 13). 
As is obvious, the coordinates of the point A are equal to 
R cos a, R sin a, and, consequently, the equation of the 
circle has such a form:

X ~  R cos a, y =  R  sin a,
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Having an equation of a curve in parametric form:
* =  <P (*). V =  V (*)» (*)

we can obtain its equation in implicit form:
/  (;X, I/) =  0.

To this effect it is sufficient to eliminate the parameter t 
from the equations (*), finding it from one equation and 
substituting into the other, or using another method.

For instance, to get the equation of a circle represented 
by equations in parametric form (i.e. implicitly) it is suf­
ficient to square both equalities and add them termwise. 
We then obtain the familiar equation x2 +  y2 = R 2.

The elimination of the parameter from the equations 
of a curve represented parametrically not always yields 
an equation in implicit form in the sense of the above 
definition. It may turn out that it is satisfied by the 
points not belonging to the curve. In this connection let 
us consider two examples.

Suppose a curve y is given by the equations in para­
metric form

x = a cos £, y — b sin £, 0 ^  t <  2j t .

Dividing these equations by a and 6, respectively, squar­
ing and adding them termwise, we get the equation

This equation is obviously satisfied by all the points 
belonging to the curve y. Conversely, if the point (x, y) 
satisfies this equation, then there can be found an angle 
t for which xla =  cos t, ylb =  sin t, and, consequently, 
any point of the plane which satisfies this equation, be­
longs to the curve y.

Let now a curve y be represented by the following 
equations

x — a cosh t, y =  b sinh £, — oo <  t <  -f oo,

where
cosh t — (el )/2, sinh t =  (el — e~l)!2.

Dividing these equations by a and 6, respectively, and 
then squaring them and subtracting termwise, we get the
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equation

a2 b2
The points of the curve y satisfy this equation. But not 
any point which satisfies the equation belongs to y. Let 
us, for instance, consider the point (—a, 0). We see that 
it satisfies the equation, but does not belong to the curve, 
since on the curve y a cosh t ^  — a.

Sometimes the equation of a curve represented in 
implicit form is ruiderstood in a wider way. One does not 
require that any point satisfying the equation, belongs 
to the curve.

EXERCISES

1. Show that the following equations in parametric form
x = R cos t +  a, y =  R sin t +  b

represent a circle of radius R with centre at point (a, b).
2, Form the equation of a curve described by a point 

on the line segment of length a when the end-points of the

segment slide along the coordinate axes (the segment is 
divided by this point in the ratio X : |.i). Take the angle 
formed by the segment with the x-axis for the parameter. 
What is the shape of the curve if X : p, =  1?
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3. A triangle slides along the coordinate axes with two 
of its vertices* Form the equation of the curve described 
by the third vertex (Fig. 14).

4. Form the equation of the curve described by a point 
on a circle of radius R which rolls along the rr-axis 
(Fig. 15). For the parameter take the path s covered by the 
centre of the circle and suppose that at the initial moment 
(s = 0) point A coincides with the origin.

5. A curve is given by the equation
ax2 +  bxy +  cy2 +  dx +  ey =  0.

Show that, by introducing the parameter t =  ylx, we 
can obtain the following equations of this curve in para­
metric form:

_ d-\-et
^ a +  bt +  ct2 ’
_ dt +  et2

a -j~ bt -(“ ct® *

Sec. 1-6. The Points of Intersection of Curves
Let there be given two curves in the zy-plane: the curve 

y1 represented by the equation
U (*> y) =  o,

and the curve y2 specified by the equation
h  (*> y) =  0-

We now find the points of intersection of the curves yx 
and y2, i.e. the coordinates of these points. Let A (x, y) 
be the point of intersection of the curves and y2. Since 
the point A lies on the curve its coordinates satisfy 
the equation fx (x , y) =  0. Also, since the point A lies on 
the curve y2, its coordinates satisfy the equation f 2 (x , 
y) = 0. Thus, the coordinates of any point of intersection 
of the curves yx and y2 satisfy the system of equations

fi (*, y) =  0, / 2 (x, y) = 0.
Conversely, any real solution of this system of equa­

tions yields the coordinates of one of the points of intersec­
tion of the curves.
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If the curve yi is represented by the equation
/i (*, y) =  0-

and the curve y2 is given by the equations in parametric 
form

X =  <p (t), y =  t  (t),
then the coordinates x, y of the points of intersection 
satisfy a system of three equations

fi (*. V) =  0, x =  q> (t) y =  ip (t).
If both curves are represented parametrically

Yi : * =  9i (*), V =  (t)\;
y2 : x =  q>3 (t), y — \|)8 (t),

then the coordinates x, y of the points of intersection 
satisfy the following system of four equations:

x  =  cpi (t), y (t),
x =  q>2 (t), y =  i|>2 (t).

Example. Find the points of intersection of the circles
x2 +  =  2ax, x2 y2 — 2by.

Subtracting the equations termwise, we find ax = by. 
Substituting y =  axlb in the first equation, we get

(1 'j x2 2ax — 0.

Whence
A 2 ab*aij — O, xz —

the corresponding ordinates being
n 2 ba?

yi — V> y2 +

The required points of intersection are (0, 0) and
/ 2afc2 2fca2 >
\a 2+ 6 2 ’ a2 +  62/ *

Let us consider another example illustrating the inter­
section of curves. Suppose two curves (yx and y2) are 
given. The curve yx is represented by an equation in
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implicit form
/ (x, y) =  0,

where /  (a:, 7/ )  is a polynomial of degree not exceeding n. 
The curve y2 is specified by two equations in parametric 
form

x  =  (p (0 , ?  =  ^  (0 »

where <p (£) and îp'^) are polynomials^5 degree not exceed­
ing m. Let the curves and y2 have more than mn 
points of intersection. Wearegoing^to show that the curve 
y2 lies entirely on the curve in a sense that all of 
its points satisfy the equation

/  (x, y) =  0.
Indeed, the algebraic equation / (<p (£), if> (£)) =  0 has 

a degree not exceeding mn and has more than mn roots. 
As is known from algebra, such an equation is an identity,
i.e. it is satisfied for any t. This means that any point of 
the curve y2 satisfies the equation f  (z, y) =  0, which 
was required to be proved.

EXERCISES

1. What condition must be satisfied by the coefficients 
of the equation of a circle

x2 +  y2 +  2 ax +  2 by +  c =  0
so that the circle (a) does not intersect the cc-axis; (6) in­
tersects the #-axis at two points; (c) touches the z-axis?

2• What condition must be satisfied by the coefficients 
of the following equations of circles

x2 +  y2 +  2 axx +  2bxy +  cx = 0, 
x2 +  y2+2a2z  +  2b2y + c2 = 0,

so that the circles (a) intersect; (b) touch each other?
3. Find the points of intersection of the two circles:

(a) *2 +  y2 =  1;
(b) x =  cos t +  1, y =  sin t.
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4. Find the points of intersection of the two curves 
represented parametricall y

* =  ir*+l, 1 x =  t2, 1
U =  J £/“ £ + ! • /

5. Show that the points of intersection of the curves
ax%-\-by2 — c, Axs-\-By6 =  C

are situated symmetrically about the coordinate axes.



Chapter 2 

The Straight Line

Sec. 2-1. The General Equation 
of a Straight Line

The straight line is the simplest and most widely used 
line.

We shall now show that any straight line has an equation 
of the form

ax + by + c =  0, (*)
where a, b, c are constant. And conversely, if a and b are 
not both zero, then there exists a straight line for which (*) 
is its equation.

Let A x (av bx) and A 2 (a2, b2) be two different points 
situated symmetrically about a given straight line

(Fig. 16). Then !any point A 
Ix, y) on this line is equidis­
tant from the points A x and 
A 2. And conversely, any 
point A which is equidistant 
from A x and A 2 belongs to 
the straight line. Hence, 
the equation of a straight 
line is

(x — aa)2 +  (y — h f  =
(x — a2)2 + {y — b2)2.

Transposing all terms of 
the equation to the left-hand 

side, removing the squared parentheses, and carrying out 
obvious simplifications, we get

2 (a2 — a{) x -j- 2 (b2 — bx) y +  {a.\ +  b\ — a\ — =  0.
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Thus, the first part of the statement is proved.
We now shall prove the second part. Let B x and B 2 be 

two different points of the xy-plane whose coordinates 
satisfy the equation (*). Suppose

axx -\- bxy +  cx =  0
is the equation of the straight line BXB 2. The system of 
equations

ax +  by-\~c = 0, \
| f +5jC J

+  +  =  0 J
is compatible, it is a fortiori satisfied by the coordinates 
of the point Bx, as well as of B 2.

Since the points B x and B 2 are different, they differ 
in at least one coordinate, say yx ^  y2. Multiplying the 
first equation of (**) by ax and the second one by a, 
and subtracting termwise, we get

(bax — abx) y+(cax — acx) =  0.
This equation as a corollary of the equations (**) is satis­
fied when y =  yx and y =  yv But it is possible only if

bax — abx =  0, cax — aci =  0.
Hence it follows that

a   b   c
ai bx cx ’

which means that the equations (**) are equivalent. The 
second part of the statement is also proved.

As was shown in Sec. 1-3, the points of a straight line 
passing through (xXl yx) and (x2, y2) allow the following 
representation

x =  (1 — t) xx +  tx2, y =  (1 — t) yx +  ty2.
Whence it follows that any straight line allows a paramet­
ric representation by equations of the form

x = at-\-b, y = ct + d, —oo <  t <  oo.
Conversely, any such system of equations may be consid­
ered as equations of a straight line in parametric form if a
3 - 0 4 0 6
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and c are not both equal to zero. This straight line is 
represented by the equation in implicit form

(x — b) c — (y — d) a — 0.

EXERCISES

1. Show that the equation
a2x2 +  2abxy +  b2y2 — c2 =  0

represents a pair of straight lines. Find the equations 
representing each line separately.

2. A curve y is represented by the equation co (x, y) =  
=  0, where (o is a polynomial of degree n with respect to 
x and y . Show that if the curve y has more than n points 
of intersection with a straight line, then it contains this 
line entirely.

3. Show that if the coefficients of the equations of two 
different straight lines

ax -j- by -j“ c =  0, Ax -j- By -f- C =  0 
satisfy the condition

Ab — aB — 0,

then the straight lines are parallel to each other, i.e. 
they do not intersect.

4. The radical axis of two circles is the locus of points 
whose powers with respect to the circles are equal (see 
Exercise 3 of Sec. 1-4). Show that the radical axis is 
a straight line. If the circles intersect, then it passes 
through the points of intersection.

5. Show that the locus of points in the plane the differ­
ence of whose distances from two given points is constant 
is a straight line.

6. Inversion of a point with respect to a circle consists 
in finding the point on the radial line through the given 
point such that the product of the distances of the two 
points from the centre of the circle is equal to the square 
of the radius.

Consider a fixed circle, centre 0  and radius i?, and any 
point A . The point A ' on the ray OA such that OA •OA' =  
=  R 2 is called the inverse of A with respect to the fixed
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circle. The circle is called the circle of inversion, its 
centre is the centre of inversion, its radius is called the 
radius of inversion, and 7?2 is called the constant of 
inversion.

Suppose 0  is at the origin. Show that the coordinates of 
the point A' are expressed in terms of the coordinates of 
the point A by the following formulas

; _ _  R*x / Rhj
X x2- \-y 2 ’ ^ x 2-\-y2 *

7. Show that the inverse of a circle is a circle or 
a straight line (when a straight line?).

8. Find the coordinates of a point A* which is sym­
metrical to the point A (#0, y0) about the straight line 
ax +  by +  c = 0.

9. Show that three points (x±, i/j), (x2, y2), (x3, y3) are 
collinear if and only if

xi //i i
x2 y 2 i
x3 Vz i

=  0.

Sec. 2-2. Particular Cases of the Equation 
of a Straight Line

Let us find out the peculiarities which happen in the 
location of a straight line relative to the coordinate system 
if its equation ax by -j- c =  0 is of a particular form.

1. a =  0. In this case the equation of a straight line 
can be rewritten as follows

£
y = ~ T -

Thus, all points belonging to the straight line have one 
and the same ordinate (—c/b), and, consequently, the line 
is parallel to the x-axis (Fig. 17, a). In particular, if c — 0, 
then the straight line coincides with the x-axis.

2. 6 =  0. This case is considered in a similar way. 
The sft'aight line is parallel to the y-axis (Fig. 17, 6) and 
coincides with it if c is also zero.
3 *
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3. c =  0. The straight line passes through the origin, 
since the coordinates of the latter (0, 0) satisfy the equa­
tion of the straight line (Fig. 17, c).

Fig. 17.

4. Suppose all the coefficients of the equation of the 
straight line are non-zero (i.e. the line does not pass 
through the origin and is not parallel to the coordinate

axes). Then, multiplying 
the equation by i/c and put­
ting —c!a =  a, — db =  p, 
we reduce it to the form

<•>

The coefficients of the 
equation of a straight line 
in such a form (which is 
called the intercept form of 
the equation of a straight 
line) have a simple geomet­
rical meaning: a and p are 
equal (up to a sign) to the 

lengths of the line segments intercepted by the straight 
line on the coordinate axes (Fig. 18). Indeed, the straight 
line intersects both the z-axis (y = 0) at point (a, 0), 
and the |/-axis (x = 0) at point (0, P).
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EXERCISES

1. Under what condition does the straight line
ax +  by +  c =  0

intersect the positive semi-axis x (the negative semi­
axis a)?

2. Under what condition does the straight line
ax +  by c =  0

not intersect the first quadrant?
3. Show that the straight lines given by the equations

ax +  by -|- c =  0, a# — &y +  c =  0, b =£ 0,
are situated symmetrically about the #-axis.

4. Show that the straight lines specified by the equa­
tions

ax -f by -f c =  0; ax +  by — c =  0,
are arranged symmetrically about the origin.

5. Given a pencil of lines
ax by -f- c -j- X (a^x -f- b^y -4- ĉ ) — 0.

Find out for what value of the parameter X is a line of the 
pencil parallel to the .z-axis (y-axis); for what value of A, 
does the line pass through the origin?

6. Under what condition does the straight line
ax by -f- c =  0

bound, together with the coordinate axes, an isosceles 
triangle?

7. Show that the area of the triangle bounded by the 
straight line

ax -f by +  c =  0 (a, h, c 0)
and the coordinate axes is

8. Find the tangent lines to the circle
x2, +  y2 +  2 ax +  2 by =  0, 

which are parallel to the coordinate axes.
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Sec. 2-3. The Equation of a Straight Line 
in the Form Solved with Respect to y .
The Angle Between Two Straight Lines

When moving along any straight line not parallel to the 
y-axis x increases in one direction and decreases in the 
other. The direction in which x increases will be called 
positive.

Suppose we are given two straight lines g1 and g2 *n the 
xy-plane which are not parallel to the y~axis. The angle

0 (gn £2) formed by the line g2 with the line g± is defined 
as an angle, less than n by absolute value, through which 
the line gx must be turned so that the positive direction 
on it is brought in coincidence with the positive direction 
on g2. This angle is considered to be positive if the line 
gx is turned in the same direction in which the positive 
semi-axis x is turned through the angle Jt/2 until it coin­
cides with the positive semi-axis y (Fig. 19).

The angle between the straight lines possesses the following 
obvious properties:

(1) 0 ten £2) =  — 0 te*. ft);
(2) 0 (gx, g2) =  0 when and only when the lines are 

parallel or coincide;
(3) 0 tes. &) =  0 tes. £2) 4- 0 tea. ?i)-
Let

ax -f- by +  c — 0
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be a straight line not parallel to the y-axis (b ^  0). 
Multiplying the equation of this line by 1 lb and putting 
—alb =  k, —clb =  Z, we reduce it to the form

y =  kx +  Z. (*)
The coefficients of the equation of a straight line in 

this form have a simple geometrical meaning:
k is the tangent of the angle a formed by the straight line 

with the x~axis',
I is the line segment {up to a sign) intercepted by the 

straight line on the y-axis.
Indeed, let A x {xx, yx) and A 2 (x2l y2) be two points on 

the straight line (Fig. 20). Then
tan a  =  =  (kx2 + l)~ (kxi +  z) =  ^

x 2 x-± x2

The y-axis (x =  0) is obviously intersected by the line 
at point (0, Z).

Let there be given in the #y-plane two straight lines:
y =  kxx -f- Z2,
y = k2x -f- Z2.

Let us find the angle 0 formed by the second line with 
the first one. Denoting by a x and a 2 the angles formed by 
the straight lines with the ar-axis, by virtue of property (3) 
we get

0 — a 2 — an.
Since the angular coefficients kx =  tan a x, k2 =  

=  tan a 2, we get
7*2 ZCi

tM 9 = - i + *A
Whence 0 is determined, since | 0 n.

EXERCISES

L Show that the straight lines ax -f by +  c =  0 and 
bx — ay +  cf =  0 intersect at right angles.

2. What angle is formed with the z-axis by the straight 
line

y = x cot a, if —



40 Analytical Geometry

3. Fonn the equations of the sides of a right-angled 
triangle whose side is equal to 1, taking one of the sides 
and the altitude for the coordinate axes.

4. Find the interior angles of the triangle bounded by 
the straight lines x +  2y = 0, 2x +  y =  0, and x +
.+ y =  1.

5. Under what condition for the straight lines ax -f 
+  by =  0 and axx -f bxy = 0 is the ar-axis the bisector of 
the angles formed by them?

6. Derive the formula tan 0 =   ̂ for the angle 0
formed by the straight line x=^at -f- ft, y =  ct +  d with 
the a-axis.

7. Find the angle between the straight lines repre­
sented by the equations in parametric form:

8. Show that the quadrilateral bounded by the straight 
lines

is a rhombus and the coordinate axes are its diagonals.

Suppose we have in the xy-plane two straight lines 
given by the equations

Let us find out what condition must be satisfied by the 
coefficients of the equations of the straight lines for these 
lines to be (a) parallel to each other, (b) mutually perpen­
dicular.

Assume that neither of the straight lines is parallel to 
the */-axis. Then their equations may be written in the

±  ax ±  by +  c ~  0 (a, fe, c 0),

Sec. 2-4. The Parallelism 
and Perpendicularity Conditions 

of Two Straight Lines

axx +  bxy +  cx = 0, 
a2x +  b2y +  c2 = 0.
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form

where
y = kyx +  Zlt y =  Zc2x +  Z2,

* ! = — £ - , * 2 = ~ 2̂
V*

Taking into account the expression for the angle between 
straight lines, we get the parallelism condition of two 
straight lines:

=
or

ax&2 — #2̂ 1 =  0. w
TTte perpendicularity condition of straight lines:

1 +  =  0,
or

axa2 +  fei&2 =  0. (*)

Though the conditions (*) and (**) are obtained in 
the assumption that neither of the straight lines is paral­
lel to the y-axis, they remain true even if this condition 
is violated.

Let for instance, the first straight line be parallel 
to the y-axis. This means that b± =  0. If the second line 
is parallel to the first one, then it is also parallel to the 
y-axis, and, consequently, b2 =  0. The condition (*) is 
obviously fulfilled. If the second line is perpendicular 
to the first one, then it is parallel to the £-axis and, 
consequently, a2 =  0. In this case the condition (**) is 
obviously fulfilled.

Let us now show that if the condition (*) is fulfilled for 
the straight lines, then they are either parallel, or coincide.

Suppose, bx 0. Then it follows from the condition (*) 
that fe2 #  0, since if 62 =  0, then a2 is also equal to 
zero which is impossible. In this event the condition (*) 
may be written in the following way

al _ a2 r\v k — kor ^ - * 2 .
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which expresses the equality of the angles formed by the 
straight lines with the #-axis. Hence, the lines are either 
parallel, or coincide.

If bx =  0 (which means that ax #  0), then it follows 
from (*) that fc2 =  0. Thus, both straight lines are paral­
lel to the y-axis and, consequently, they are either paral­
lel to each other, or coincide.

Let us show that the condition (**) is sufficient for the 
lines to be mutually perpendicular.

Suppose bx -7̂ =0 and b2 0. Then the condition (**) 
may be rewritten as follows:

This means that the straight lines form a right angle,
i.e. they are mutually perpendicular.

If then bx =  0 (hence, a1 =f= 0), we get from the condi­
tion (**) that a2 = 0. Thus, the first line is parallel to 
the y-axis, and the second one is parallel to the #-axis 
which means that they are perpendicular to each other.

The case when b2 =  0 is considered analogously.

1. Show that two straight lines intercepting on the 
coordinate axes segments of equal lengths are either 
parallel, or perpendicular to each other.

2. Find the parallelism (perpendicularity) condition of 
the straight lines represented by the equations in para­
metric form:

3. Find the parallelism (perpendicularity) condition for 
two straight lines one of which is specified by the equation

or
1 +  kxk2 = 0.

EXERCISES

ax +  by +  c = 0,
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the other being represented parametrically: 
x =  at +  p, y =  yt +  8.

4. In a family of straight lines given by the equations 
axx +  bxy +  ct +  % (a2x +  b2y +  c2) =  0

(A, parameter of the family) find the line parallel (perpen­
dicular) to the straight line

ax +  by +  c =  0.

Sec. 2-5. The Mutual Positions of a Straight Line 
and a Point.

The Equation of a Straight Line 
in the Normal Form

Suppose we have in the #y-plane a point A' (x' , yr) and 
a straight line g:

ax +  by H- c =  0.
IE the point A' lies on the line g, then

ax' +  by' + c = 0.
Let us find out what geometrical meaning has the expres­

sion
h (x', y') =  ax +  by' +  c,

if the point A ' is not on the straight line.
Let A' (xr, y ) and A" (x", y") be two points not lying 

on the line g. The coordinates of any point of the segment 
A'A" can be represented in the form

x =  tx' +  (1 — t)x", y ty' +  (1 — t)y"> 0 ^  t ^  I
(cf. Sec. 1-3). Thus, for any point A of the segment A ’ A"

h (x, y) =  th {x , y') +  (1 — t) h (x \ y") =  h (t).
If the points A' and A" belong to one half-plane, 

then h (t) does not vanish on the interval [0, 11. Conse­
quently, h (0) =  h (x'\ y") and h (1) =  h {x , y') are of 
the same sign. If ^4' and A " belong to different half-planes, 
then h (t) vanishes on the interval [0, 1] and, being
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a linear function, attains at the end-points values of 
opposite signs, i.e. h (x'\ y") and h (x',y') have opposite 
signs.

Hence, the expression
ax' +  by' +  c

is positive for the points A ' belonging to one of the half­
planes defined by the straight line g, and is negative for

the points of the other.
To find out geometrical 

meaning of | ax' by' +  c\ 
let us determine the distance 
of the point A ' from the 
straight line g.

We drop from the point A' 
a perpendicular on the line g 
(Fig. 21). Let A 0 (x0, y0) be 
the foot of the perpendicular. 
The equation of the straight 
line A 'A 0 can be written in 
the form
b (x — x’) — a (y — y') =  0.
Indeed, the straight line 
represented by this equation 

passes through the point A' and is perpendicular to g. 
Hence

b (x0 — x') — a (y0 — y') =  0. (*)
Since the point A 0 lies on the line g we get, 

ax o +  by0 +  c =  0.
Whence

ax' +  by' +  c =  a (x' — x0) +  b (y' —y0). (**) 

Squaring (*) and (**) and adding them, we obtain 
(ax' +  by’ +  c)2 =  (a2 + b2) l(x'—x0)2+ (y '—y0)2]. 

Hence
| ax' -j-by'+c  | =  ]/ az + b28(x’, y'),
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where 6 {x\ y ') is the distance of the point A' {x y ) 
from the line g.

Thus, tlie magnitude
| ax' + by' + c \

is proportional to the distance of the point (x' , yf) from 
the straight line

ax by -\- c =  0.
In particular, if a2 +  62 =  1, then this quantity is equal 
to the distance of the point from the straight line. In 
this case the straight line is said to be represented by an 
equation in the normal form.

As is obvious, to reduce the equation of the straight 
line

ax +  by -|- c =  0
to the normal form it is sufficient to divide it by

+  a2 -f- b2 or — ]/ a2 b2
As an example illustrating the application of the 

normal form of the equation of a straight line let us 
derive the formula for the area of a triangle given by the 
coordinates of its; vertices.1 Let A (xx, y-f), B (x2, y2), 
C (#3, y3) be the vertices of the triangle. Then its area 
will be

S = ± h \ B C \ ,

where h is the altitude of the triangle dropped onto the 
side BC,

\BC \ = [(*, — x3)z +  (j/2 — ^3)3l1/a- 
We then find h. The equation of the straight line BC is 

(x — x j  (z/2 — y3) — (y — yz) (x2 — x3) =  0.
Indeed, it is linear and is satisfied by the points B 

and C. We now reduce this equation to the normal form 
by dividing it by [(y2 — y3)2 +  (x2 — x3)21X/2. We get 

(x—x2) (yg — y3)—{y—yt) (xz—x3) _  q 
Y ( x 2—i 3)2+ (!/2—y3)2
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Substituting the coordinates of the vertex A in the 
left-hand member of this equation, we obtain (to within 
a digit) the altitude of the triangle dropped from the 
vertex A . Hence, the area of the triangle

s  =  y  I ( * i — * 2) (yz —yz) — (Vi—yz) ( * 2 — ^ ) I-

EXERCISES

1. Given the equations of the sides of a triangle and 
a point by its coordinates. How can we find out whether 
this point lies inside the triangle or outside it?

2. Show that the distance between the parallel straight 
lines

ax +  by +  Ci =  0, ax +  by +  c2 =  0 

is equal to
1 Cl — c2 I 

+  65

3. Form the equations of the straight lines parallel to 
the line

ax -f- by -j- c — 0,

and found at a distance 8 from it.
4. Show that if two intersecting lines are represented 

by the equations in the normal form
ax +  by +  c =  0, axx +  b1y~{-c1 = 0,

then the equations of the bisectors of the angles formed 
by them will be

(ax +  by +  c) ±  (axx +  bxy +  cx) =  0.

5. Show that the locus of points whose distances from 
two given straight lines are in a given ratio consists of 
two straight lines. Form the equations of these lines, 
taking the equations of the given lines in the normal form 
and putting the ratio of the distances to be equal to 
k : [.I.
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Sec. 2-6. Basic Problems on the Straight Line
Let us form the equation of an arbitrary straight line 

passing through the point A (xx, yx).
Suppose

ax +  by +  c =  0 (*)
is the equation of the required line. Since the line passes 
through the point A , we get

OX1 -f byx +  c =  0.
Expressing c and substituting it in tbe equation (*), 

we obtain
a (x — Xj) +  b (y — yx) =  0.

It is obvious that, for any a and &, the straight line 
given by this equation passes through the point A.

Let us form the equation of the straight line passing 
through two given points A x (x±, yx), A 2 (x2, y2)>

Since the straight line passes through the point A u its 
equation may be written in the form

a (x — xx) +  b (y — yx) =  0.
Since the line passes through the point A 2, we have

a (x2 — xx) +  b (y2 — yx) =  0,
whence

y 2~ yi 
b x2 — x± ’

and the required equation will be
x — xx y — y 1 __
x2 — xx V% — Vi

Let us now form the equation of a straight line parallel 
to the line

ax +  by +  c =  0,
and passing through the point A (xx, yx). 

Whatever the value of X, the equation
ax +  by +  X =  0
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represents a straight line parallel to the given one. Let 
us choose X so that the equation is satisfied for x =  x1 
and y =  yx:

ax i +  by1 + X =  0.
Hence

X =  — ax1 — byx.
and the required equation will be

a (x — xx) +  b (y — y j  =  0.
Let us form the equation of a straight line passing through 

the given point A (xx, yx) and perpendicular to the line 
ax +  by +  c =  0.

For any X the straight line
bx — ay -f- X =  0

is perpendicular to the given line. Choosing X so that the 
equation is satisfied for x = xx, y =  yx we find the re­
quired equation

b (x — xx) — a (y — yx) =  0.
Let us form the equation of a straight line passing through 

the given point A (xx, yx) at an angle a to the x-axis.
The equation of the straight line can be written in the 

form
y =  kx -j- I.

The coefficients k and I are found from the conditions 
tan a =  k, yx =  kxx +  I.

The required equation is
y — Vi — — xi) tan

We conclude with the following assertion: the equation 
of any straight line passing through the point of intersection 
of two given sti'aight lines

axx +  h y  +  cx =  0, a2x +  b2y +  c2 =  0,
can be written in the form

X (axx +  bxy +  cx) +  p, (a2x+ b2y+ c2) = 0. (**)
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Indeed, for any X and p, which are not both zero, the 
equation (**) represents a straight line which passes 
through the point of intersection of the two given lines, 
since its coordinates obviously satisfy the equation (**). 
Further, whatever the point (xx, yx) which is different 
from the point of intersection of the given straight lines, 
the line (**) passes through the point (xx, yx) when

I  =  atxx +  b2y2 +  c2, — \i =  axxx +  bxyx +  cv
Consequently, the straight lines represented by (**) 

exhaust all the lines passing through the point of inter­
section of the given straight lines.

EXERCISES

1. Form the equation of a straight line parallel (per­
pendicular) to the straight line

ax +  by -f e =  0,
passing through the point of intersection of the straight 
lines

axx +  bxy +  cx =  0, a2x +  b2y +  c2 =  0.
2. Under what condition are the points (xx, yx), (x2, y2) 

situated symmetrically about the straight line
ax +  by +  c =  0?

3. Form the equation of a straight line passing through 
the point (x0, y0) and equidistant from the points (xv  yx) 
and (x2, y2).

4. Show that three points (xx, yx), (x2, y2) and (x3, ys) 
lie on a straight line if and only if

X i y i l
x2 y * l
x3 y s l

Sec. 2-7. Transformation of Coordinates
Let there be introduced two coordinate systems (xy 

and x'y') in the plane (Fig. 22). We have to establish the 
relation between the coordinates of an arbitrary point with 
respect to these coordinate systems.
4 -0 4 0 6
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Let
axx +  bxy + cx = 0,

&2x -f- b2y 4" c 2 =  ^
be the equations of the axes y' and x' in the normal form 
in the coordinate system xy.

The equation of a straight line in the normal form is 
defined uniquely to within a change of sign of all the

coefficients of the equation. 
Therefore, without limitation 
of generality, we may assume 
that for some point A 0 (#0, 
y0) situated in the first quad­
rant of the coordinate sys­
tem x'y'

aixo +  îUo ci > 0 ,
0 2 ^0  +  &2*/0 +  ^2 > 0

(otherwise ‘the signs of the 
coefficients maybe reversed) 

We assert that the coordi­
nates x' ,y' of an arbitrary point 

with reference to the coordinate system x y ' are expressed 
in terms of the coordinates x, y of the same point in the 
coordinate system xy by the formulas

af = aix + b iy + cu 1 
y' = a2x + b2y + c2. j

Let us, for instance, prove the first formula. The abso­
lute value of its left-hand side is equal to the absolute 
value of its right-hand side, since it represents the distance 
of the point from the i/'-axis. In each of the half-planes 
defined by the y'-axis both sides of the formula preserve 
the sign and change it when passing from one half-plane 
to the other. And since the signs coincide for the points A 0, 
they coincide for any point of the plane.

The second formula is proved in a similar way.
Since

axx +  bxy 4 - ^ = 0 ,  
a2x -(- b2y 4" c2 =  0
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are the normal equations of two mutually perpendicular 
straight lines, the coefficients av  6X, a2, b21 of the for­
mulas (*) are related by the formulas

a\-)rb\ = i ,  \
a\ + b\ = \ ,  I (**)

al®2 1̂̂ 2 =  0- J
Taking into consideration the first two formulas of (**), 

we may represent the coefficients aly a2, b2 in the 
following way:

ax = cos a, b± =  sin a, 
a2 =  cos ai, b2 =  sin av 

Then from the third relation of (**) we get
cos a cos +  sin a sin a x =  cos (a — a x) =  0,

jiwhence it follows that ax =  a  ±  ^  +  2fcri. Thus, the
formulas (*) for the transformation of coordinates can 
be written in one of the following two forms:

x = ;rco sa  +  z/sina-f c4, 1
z/' =  — x sin a  +  y cos a +  c2 f

or
x' =#cosa-|-z/ s in a  +  Ci, 
y' = x sin a  — y cos a  +  c2.

The first of them covers all the cases when the coordi­
nate system x'y ' can be obtained from the coordinate 
system xy by motion. The second system of formulas 
suits for the cases when the coordinate system x'y' is 
obtained from the system xy by means of motion and 
mirror reflection.

The quantities a, cx, and c2 in the formulas for trans­
forming ordinates have a simple geometrical meaning: 
a is the angle formed by the #'~axis with the x-axis (to 
within an even 2jc), and c± and c2 are the coordinates of 
the origin of the coordinate system xy in the coordinate 
system x'y'.
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Formulas for the transformation of coordinates allow 
another important interpretation if they are considered as 
formulas for onto mapping of the plane in which a point 
with the coordinates x ' , yr is correlated with the point 
with the coordinates xy in the same coordinate system. 
This mapping differs in that it preserves distances. 
Namely, the distance between any two points A and B  
is equal to the distance between their images A ' and B \  
Thus, this mapping is a motion, or a motion with mirror 
reflection. The first system of formulas corresponds to 
proper motion, whereas the second system of formulas 
gives motion with mirror reflection.

EXERCISES

1. Derive the formulas for passing from the coordinate 
system xy to the coordinate system x y ' if the coordinate 
axes x ' and y' are given by the equations

ax + by +  cx =  0, —bx +  ay +  c2 =  0.

2. Derive the equation of the curve x2 — y2 =  a2, 
taking the straight lines

x +  y =  0, x — y = 0

for the new coordinate axes.
3. The new coordinate system x'y' is obtained from the 

old coordinate system xy by rotating the latter about 
some point (,x0, z/0). Using the formulas (*), for the trans­
formation of coordinates find x0 and z/0-.

4. Putting % =  x -f- iy, show that any motion in the 
xy-plane is realized by a linear transformation of the 
complex variable

z' =  di>Z 4" c,

where co and c are complex numbers, and | co | =  1.
5. Find the equation of the curve described by the 

point C of the mechanism shown in Fig. 23. ABC is a rigid 
triangle, the point A slides along the #-axis, and the 
point B moves along a circle of radius R  with 
centre at the origin.
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Solution. At the moment when the point B coincides 
with B 0 the points A, B, and C have the coordinates 
(d, 0), (R, 0), and (a, b), respectively. Let us put z0 =

a +  ib. At an arbitrary moment the complex coordinate 
of the point C

z =  coz0 +  c.

Since all the time the point B  remains on the circle

C

z2 +  J/2 =  # 2> and the point A on the ;r-axis, we have 
| (oR +  c | =  /?, Im (cod +  c) =  0.

Hence
| ft) (R — zp) +  z | =  R, lm (© (d -  zQ) +  z)=0,
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or

I R — z0 I2 +  © ( R  — Z0) z +  (0 (R — z0) z +  I 2 |2 =  i?2, 
CO ( d  —  2 0) —  (0 ( d  —  2 0) +  2 —  2 =  0

(conjugate complex numbers are marked with dashes).
Solving these equations with respect to co and co, and 

noting that coco =  1, we find the equation satisfied by 2. 
Substituting then x +  iy for 2, we get the equation of the 
required curve.

6. Find the equation of the curve described by the 
point t  of the mechanism shown in Fig. 24. The triangle 
ABC is rigid, its vertices A and B move along circles.



Chapter 3 

Conic Sections

Sec. 3-1. Polar Coordinates
In a plane (Fig. 25) we take an arbitrary point 0  and 

draw a ray g. The direction of angular measurement about 
the point 0  is also given. Then the position of any point A 
in the plane may be specified by two numbers p and 0 : (1) 
p expresses the distance of the point A from 0 , and (2) 0 
is the angle formed by the ray OA with the ray g.

Fig. 25.

The numbers p and 0 are called the polar coordinates 
of the point A. The point 0  is termed the pole, and the 
ray g the polar axis.

Like in the case of the Cartesian coordinates, we may 
speak of the equation of a curve in the polar coordinates. 
Namely, the equation

<P (p, 0) =  0
is called the equation of a curve in the polar coordinates if 
it is satisfied by the polar coordinates of each point of the
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curve. And conversely, any pair of the numbers p, 0 
satisfying this equation represents the polar coordinates 
of one of the points on the curve.

By way of example let us form the equation (in polar 
coordinates) of a circle passing through the pole with 
centre on the polar axis and radius R. From a right-angled 
triangle OAA0 we get OA =  OA0 cos 0 (Fig. 26). Whence 
the equation of the circle is

p =  2R cos 0.

Let us now introduce on the plane p0 a system of Car­
tesian coordinates xy , taking the pole 0  for the origin of

the Cartesian coordinate sys­
tem, the polar axis for the 
positive semi-axis x , and 
choosing the direction of the 
positive semi-axis y so that it 
forms an angle of +  n !2 with 
the polar axis as measured 
in the chosen direction.

The following simple rela­
tionship is obviously estab­
lished between polar and 
rectangular coordinates of 
a point:
x =  p cos 0, y =  p sin 0 (*)
(Fig. 27). This makes it pos­
sible to get the equation of 

a curve in Cartesian coordinates, given the equation of 
this curve in polar coordinates, and vice versa.

Let us, for instance, form the equation of an arbitrary 
straight line in the polar coordinates. The equation of 
this line in the Cartesian coordinates is

ax +  by +  c =  0, c <  0.

Introducing p and 0 in this equation (instead of x 
and y) according to the formulas (*), we get

p (a cos 0 -)- b sin 0) +  c =
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a
/ a 2 +  fc2

b
Y  a2 +  &2

cos a, 

sin a,

Y  a2+ 6 2

we obtain the equation of the straight line in the form 
p cos (a — 0) =  p0.

EXERCISES

1. Show that the equation of any circle in polar coordi­
nates can be written in the form

p2 +  2a p cos (a +  0) +  b = 0.
Determine the coordinates of its centre p0, 0O, and the 
radius i?.

2. Express the distance between two points in terms of 
the polar coordinates of these points.

3. What geometrical meaning have a and p0 in the 
equation of a straight line 
in polar coordinates

p cos (a —0) —- p0?
4. Form the equation (in 

polar coordinates) of the loc­
us of the feet of perpendicu­
lars dropped from the point 
A on the circle onto its 
tangent lines (the cardioid, 
see Fig. 28). Take the point 
A for the pole, and the exten­
sion of the radius OA for the 
polar axis.

5. Form the equation of 
the lemniscate of Bernoulli 
which is the name for the 
locus of points the product of whose distances from two 
given points and F2 (the foci) is constant and is equal
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to | F-J?2 |2/4. Take the mid-point of the line segment 
joining the foci for the pole, and the ray passing through 
one of the foci for [the polar axis.

Sec. 3-2. Conic Sections and Their Equations 
in Polar Coordinates

A conic section (or a conic) is defined as a curve obtain­
able on the surface of a circular cone at the intersection 
with an arbitrary plane that does not pass through the

vertex of the cone (Fig. 29). Conics possess a number of re­
markable properties, one of them consisting in the fol­
lowing.

Each conic section, except for a circle, is a plane locus of 
points the ratio of whose distances from a point F and a 
straight line 6 is constant. The point F is called the focus 
of a conic, the straight line 6 being its directrix.

Let us prove this property. Let y be the curve along 
which the plane (^intersects the cone (Fig. 30). We now in­
scribe in the cone a sphere which touches the plane o, and 
denote by F the point of contact of the sphere with the
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plane. Let co denote the plane containing the circle along 
which the sphere touches the cone. We then take an arbit­
rary point M  on the curve y and draw through it an ele­
ment of the cone, denoting by B the point at which it 
cuts the plane co. We finally drop a perpendicular from 
the point M  onto the line 6 of intersection of the planes 
g and co.

It is stated that the curve y possesses the above property 
with respect to the point F and the straight line 6. Indeed,

FM =  BM  as tangent lines to the sphere drawn from one 
point. Further, if we denote by h (M) the distance of the 
point M  from the plane co, then AM  — h (Af)/sin a, 
BM  =  h (M)/sinJ p, where a  is the angle between the 
planes co and cr, and p is the angle between the generatrix 
of the cone and the plane co.

Hence it follows that
AM _ AM _  sin p
FM ~~ BM ~~ sin a ’

i.e. the ratio AMIFM does not depend on the point M. 
The statement has been proved.

Depending on the magnitude of the ratio A of the dis­
tances of an arbitrary point of a conic section from the focus 
and directrix the curve is called the ellipse (A- << 1), the 
parabola (A =  1), or the hyperbola (A > 1 ) , the number A 
being termed the eccentricity of a conic section.

Let F be the focus of a conic section and its directrix 
(Fig. 31). In the case of the ellipse and parabola (A 1)
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all points of the curve are situated on one side of the 
directrix, namely, on the side where the focus F is lo­
cated. Indeed, for any point A situated on the other side 
of the directrix

AA AA ^

On the contrary, the hyperbola (X >  1) has points situ- 
ated on both sides of the directrix. The hyperbola consists 
of two branches separated by the directrix.

Let us form the equation of a conic section in polar 
coordinates taking the focus of the conic section for the 
pole of the coordinate system p0 and drawing the polar 
axis so that it is perpendicular to the directrix and inter­
sects it (Fig. 32).

Suppose p is the distance of the focus from the direc­
trix. The distance of an arbitrary point A of the conic 
section from the focus is equal to p, and the distance from 
the directrix to p — p cos 0 or p cos 0 — p, depending on 
how the points A and F are situated relative to the direc­
trix (on one or both of its sides). Hence the equation of 
the conic section

P
P — p cos 0 = x n



Ch. 3. Conic Sections 61

for the ellipse and parabola, and
P

p — p cos 0 =  ± x (**)

for the hyperbola (the upper sign corresponding to one 
branch of the hyperbola, and the lower sign to the other). 

Solving the equations (*), (**) with respect to p, we get
Xp

p — l+xcose

which is the equation of the ellipse and parabola, and

i  Xp
p ~  i ±  % cos e

which is the equation of the hyperbola.
Figure 33 illustrates the change in the shape of a conic 

section depending on the eccentricity

EXERCISES

1. Show that the curve
________ c______
 ̂ 1 +  a cos 0 +  b sin 0 ’

is a conic section. Under what condition is the curve an 
ellipse, a hyperbola, a parabola?

2. Given the three points (px, 0), (p2, ji/2), and (p3, jt), 
form the equation of an ellipse, knowing that one of its 
foci is situated at the pole of the p0 coordinate system.

3. Let A and B be the points at which a conic section 
intersects a straight line passing through the focus F. 
Prove that

AF r  BF

does not depend on the straight line.
4. Show that the inversion of the parabola with respect 

to the focus transforms it into a cardioid (see Exercise 4 
of Sec. 3-1).
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Sec. 3-3. The Equations of Conic Sections 
in Rectangular Cartesian Coordinates 

in Canonical Form

In Sec. 3-2 we obtained the equations of conic sections 
in the polar coordinates p0. Let us now pass over to the 
rectangular coordinate system xy, taking the pole O for 
the origin and the polar axis for the positive semi-axis x.

From the equations (*) and (**) of Sec. 3-2 for any 
conic section we have

p2 =  X2 (p — p cos 0)2.
Whence, taking into account the formulas of Sec. 3-1, 
which establish relation between the polar and Cartesian 
coordinates of a point, we obtain

x2 +  y2 =  A,2 (p — x)2,
or

(1 _  xz +  2pX2x + y2 -  Wp2= 0. (*)
This^equation becomes considerably simplified, if we 

displace the origin along the rc-axis in a required way.
Let us begin with the ellipse and hyperbola. In this case 

the equation (*) may be written in the following way:

We now introduce the new coordinates x 'y y ', using the 
formulas

» +  1 ^ 2  = g , » y = y \

which corresponds to the transfer of the origin into the 
point

( ___ ^ P - o)\ l - p  ’ /•
Then the equation of a curve will take the form

(l — X2) x '2-\-y' 2— =
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or, putting for brevity
Wp* __ Wp*

(1 — A,2)2 ’ |1 — A,21
we get the following equations:

for the ellipse

+ V - 1=°-

b \

for the hyperbola

The parameters a and b are termed the semi-axes of an 
ellipse (a hyperbola).

For the parabola (k =  1) the equation (*) will have the 
form

2px + | / 2 ~ p 2 = 0,
or

y2 — 2p ( — * +  - f - ) = 0 ;

by introducing the new coordinates

x ' = — x +  y' = y

it is transformed to the form
y'2 -  2px' =  0.

The equations of the conic sections obtained in the 
coordinates x \  y' are called canonical.

EXERCISES

1. Show that the equation of a conic section with the 
focus (x0, y0) and the directrix

ax -f by +  c =  0
has the form

(x — X0f  +  (y — y0f  — k2 {ax +  hV 4- c)2 =  0.
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For what values of U2 is this conic section an ellipse, 
a parabola, a hyperbola?

2. Let K be any conic section and F its focus. Show that 
the distance of an arbitrary point A of the conic section 
from the focus F is linearly expressed in terms of the 
coordinates x , y of the point, i.e.

AF  =  ax +  +  7,

where a, (5, 7 are constants.
3. Show that any straight line intersects a conic sec­

tion at most at two points.
4. Show that the locus of points the sum of whose dis­

tances from two given points is constant is an ellipse 
(see Exercise 4 of Sec. 1-4).

5. Show that the locus of points the difference of whose 
distances from two given points is constant is a hyperbola 
(see Exercise 5 of Sec. 1-4).

6. What is the locus of the centres of circles touching 
the two given circles Kx and Consider various cases of 
mutual positions of the circles Kx and K2, and also the case 
when one of the circles degenerates into a straight line.

Sec. 3-4. Studying the Shape of Conic Sections 

The ellipse (Fig. 34):

Let us note here that the coordinate axes are the axes of 
symmetry of the ellipse, and the origin is the centre of 
symmetry. Indeed, if the point (x,y) belongs to the ellipse, 
then the points symmetrical to it about the coordinate 
axes {—x, y), (x, —y) and about the origin (~—x, —y) 
also belong to the ellipse, since they satisfy its equation 
together with the point (x, y). The points of intersection 
of the ellipse with its axes of symmetry are called the 
vertices of the ellipse.

The entire ellipse is contained inside a rectangle 
| a: | | y \ formed by the tangent lines to the
ellipse at its vertices (see Fig. 35)
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Indeed, if the point (x , y 
gle, then at least one of

is situated outside the rectan- 
the inequalities | x | >  a or

1
'///////A

y
V ///////.

1

%Y/,̂VA
4 . 1
y jv z w .

Fig. 35.

\ y Z>b is satisfied for it, but then

and the point cannot belong to the ellipse.
We can obviously obtain an ellipse from a circle by 

uniformly contracting the 
latter. Let us draw on the 
plane a circle

We then imagine that the 
zy-plane is uniformly con­
tracted with respect to the 
;r-axis so that the point 
(x, y) is transferred to the 
point (x, y), where x =  x, 
and y In doing so the
circle (*) is transformed into 
a curve (Fig. 36). The coordinates of any of its points 
satisfy the equation

2L+J!L = ia2 ' b2

Hence, this curve is an ellipse.
5 - 0 4 0 6
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The hyperbola (Fig. 37):

a2 b2 1

Just as in the case of the ellipse, we come to a conclusion 
that the coordinate axes are the axes of symmetry of 
the hyperbola, and the origin is the centre of symmetry.

The hyperbola consists of two branches symmetrical 
about the ij-axis and situated outside the rectangle 
I # I <  a | y | <  b and inside two angles formed by its 
extended diagonals (Fig. 38).

Indeed, inside the rectangle | x | <  a and, consequently,

i.e. there are no points of the hyperbola inside the rectan­
gle. Nor they exist within the hatched portion'of the plane 
(see Fig. 38), since for any point (,x, y) situated in 
this portion of the plane

*y

Fig. 37. Fig. 38.

whence



and, consequently,
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K*
fl2 b2 < 0 < 1.

It is worth mentioning the following property of the 
hyperbola. If a point (x , y), while moving off along the 
hyperbola, is at an infinite distance from the origin of the 
coordinates (x2 +  V7, °°)> then its distance from one of
the diagonals of the rectangle which are obviously speci­
fied by the equations

x
a

decreases infinitely (tends to zero). 
Indeed, the quantities

X

a
y_
b and x

a
£
b

are proportional to the distances of the point (x, y) of the 
hyperbola from the indicated lines (see Sec. 2-5). The 
product of these quantities

x 1 y 1 x ___y_ x2 V2
a +  b | a b a2 b2

If our assertion that the distance from one of the diag­
onals tends to zero is false, then there exists such % > 0  
and arbitrarily distant points of the hyperbola for which

X

a
£
b

x___ y_
a b

And since
f  1 =  1a b I

then for such points
x____y_
a b % *

Squaring these inequalities and adding them, we get

a2 b2 ^  X2 ’

but this contradicts x2 +  y2
5 *

OO.
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The assertion lias been proved. 
The straight lines

y
b

are called the asymptotes of the hyperbola. 
The hyperbola

is said to be conjugate with respect to the considered 
hyperbola

j / i  =  \ 
b2

It has the same asymptotes but is situated inside the sup­

plementary vertical angles formed by the asymptotes 
(Fig. 39).

The parabola (Fig. 40):
y2 — 2px =  0

has the z-axis as the axis of symmetry, since along with 
the point (x, y) a point (x, —y) which is symmetrical to it 
about the £-axis also belongs to the curve. The point of 
intersection of the parabola with its axis is called the 
vertex of the parabola. Thus, in this case the vertex of the 
parabola is the origin.
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EXERCISES

1. Show that any ellipse is the projection of a circle.
2. Show that the product of the distances of a point on 

the hyperbola from its asymptotes is constant (i.e. it is 
independent of the point).

C D

3. Show that the equation of any hyperbola with the 
asymptotes

axx -f bxy +  cx =  0, a2x +  b2y -f c2 =  0

can be written in the form
(axx + bxy +  cx) (a2x +  b2y +  c2) =  const.

4. Justify the following method of constructing an ellipse 
(Fig. 41). The sides of CD and AC of a triangle are di­
vided into the same number of segments of equal length. 
The points of division are tnen joined to A and B . The 
points of intersection thus obtained lie onjthe ellipse with 
the major axis A B . The minor semi-axis is equal to half 
the altitude of the rectangle.

5. Justify the method of constructing the parabola 
illustrated in Fig. 42.
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Sec. 3-5. A Tangent Line to a Conic Section

The tangent line to a curve at point A is defined as the 
limiting position, if this exists, of the secant line AB  when 
the point B approaches A unboundedly (Fig. 43).

Suppose a curve is given by the equation y =  /  (x). 
Let us form the equation of a tangent line at point

A (xQ, z/0). Let B (x0 +  Ax, 
y0 +  Ay) be a point of the 
curve situated close to A. The 
equation of the secant is

J - t* —*(»)•
As B-+A

and we get the equation of the 
tangent line
y — y o =  / '  (%o) (x — x o)- (* )

Analogously, if a curve is specified by the equation 
x = cp (y), themthe equation of the tangent line at point 
(x0, IJo) will be

x — x0 =  cp' (y0) (y — y0). (**)

Let us form the equation of a tangent line to a conic sec­
tion.

The case of parabola. The equation of the parabola may 
be written in the form

Then the equation of the tangent line in the form (**) 
will be

x - xo = ~ - (y — yo)

or
yy<> — yl +  — p*  =  o .
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Since the point (x0, y0) lies on the parabola and, hence, 
y\ — 2px0 =  0, the equation of the tangent line can be 
represented in the following final form:

yy o — p (x +  x0) =  0.
The case of ellipse (hyperbola). Let (xQ, y0) be a point 

on the ellipse, and y0̂ =  0. In the neighbourhood of this 
point the ellipse can be specified by the equation

y = b V
where the square root should be taken with the same sign 
as y0. The equation of the tangent line is found by the 
formula (*):

y — y o = (x — x0),

or
X0b2 / x

Multiplying it by yjb* and transposing all terms to 
the left-hand side, we get

i yyo ( xo , vl \ _  n
+  bt [ a2 +  62 )

or
X * 0  , y i / o  4

a2 -h b2 U’

since 4 + 4 = 1 *a2 o*
In the neighbourhood of any point (a?0, yQ) of the ellipse, 

where x0 =+ 0 the ellipse can be specified by the equation

The square root is taken with the same sign as x0. Then, 
reasoning in a similar way and using the formula (**) we 
arrive to the equation of the tangent line
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Since at each point of the ellipse xQ and y0 cannot be 
equal both to zero, then at any point (,x0, y0) the equation 
of the tangent line to the ellipse will be

| yyo _  a “T b2

The equation of the tangent line to the hyperbola

is obtained analogously and has the form
xxo Mq ^
a2 b2

Let us show that a tangent line to a conic section has only 
one point in common with this section (i.e. the point of 
iangency). Indeed, let us take, for example, an ellipse 
whose equation is

The equation of the tangent line at point (#0, y0) wil] be
, yyo _  a 

a2 b2

Let us now look for the points of intersection of the ellipse 
with its tangent line. Eliminating x from the equa­
tions, we obtain for y

or
g2 ^o_\ o7, a2 yo i a% ( \

y bHl I a2 +  b2 ) 2y xl b2 +  xl 11

Since the point (a:0, y0) lies on the ellipse, we have x\ia2 -f 
+  yl/b2 =  1, and the equation for y takes the form

6^t (.V2- 2 i/ i/o +  J/o) =  0.

This equation has two merged roots y --■= y0. Analogous- 
ly, eliminating y from the equations of the ellipse and its 
tangent line we get x =  x0. Thus, the ellipse has only one
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point in common with the tangent line, i.e. the point of 
tangency (x0, y0). For the hyperbola and parabola this 
is proved in a similar way.

Based on the property of a tangent line to have only one 
point in common with a conic section is a refined method 
of deriving the equations of a pair of tangent lines pas­
sing through an arbitrary point. Let us take, for example, 
an ellipse specified by the following equation

We then form the equation of the tangent lines to the ellipse 
passing through the point (x0, y0) not lying on the 
ellipse. Let (s, y) be an arbitrary point. The coordinates 
of any point (s', yf) on the straight line g passing through 
the points (s0, y0) and (s, y) can be represented in the form

We now look for the points of intersection of the line g 
with the ellipse, for which purpose we substitute x ' and yr 
in the equation of the ellipse. We get

The point (s, y) will be on the tangent line to the ellipse 
if the roots of the equation for t are multiple, i.e. the 
discriminant of the equation is equal to zero. Hence, to 
get the equation of the tangent lines it is necessary to 
equate to zero the discriminant of the equation for t:

,r S 0 +  tX

1 +  t ’

y<>+ty
y ~  l + t *

or

i yyp 
a2 ' b*
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The equations of tangent lines to a hyperbola and para­
bola have an analogous form. Let us note here that the 
straight line

i : vy<> _ a
a2, ' b2 1

passes through the points of tangency.

EXERCISES

1. Show that a tangent line to the hyperbola, together 
with its asymptotes, defines a triangle of a constant area.

2. Express the condition of tangency of the straight line

y — y „ =  M z  — z 0)
to the ellipse

Show that the locus of the vertices (x0, y0) of right 
angles whose sides touch the ellipse is a circle.

3. Show that the vertices* of right angles whose sides 
touch a parabola lie on the directrix, and the straight line 
joining the points of tangency passes through the focus.

4. Derive the equation of a pair of tangent lines to a co­
nic section which are parallel to the straight line

ax +  Pp +  ? =  0.
5. Show that the segment of a tangent line to the hyper­

bola contained between the asymptotes is bisected by the 
point of tangency.

Sec. 3-6. The Focal Properties 
of Conic Sections

By definition, a conic section has a focus and a directrix. 
We are going to show that the ellipse and hyperbola have 
one more focus and one more directrix. Indeed, let the conic 
section be an "ellipse. In the canonical arrangement its 
directrix 6X is parallel to the y-axis and the focus F1 lies
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on the ;r-axis (Fig. 44). The equation of the ellipse is

+ — =  1

Since in such a position the ellipse is symmetrical with 
respect to the i/-axis, it has a focus F2 and a directrix 62 
which are respectively symmetrical to the focus F1 and the

directrix 6X about the y-axis. Reasoning in an analogous 
way, we prove that the hyperbola also has two foci and 
two directrices.

Let us now show that the sum of the distances of an arbit­
rary point of the ellipse from its foci is constant, i.e. it is 
independent of the point. Indeed, for an arbitrary point X  
(Fig. 44) we have

Xl<\
X X 1 K

XF 2

x x 2 X.

Hence
XFx +  XF2 =  X (XtX 2) =  const.

Analogously, we can show that the difference of the dis­
tances of an arbitrary point of the hyperbola pom its foci 
is constant (Fig. 45).

Let us find the foci of the ellipse and hyperbola in the 
canonical case.

The equation of the ellipse is
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Let c be the distance from the centre of the ellipse to the 
foci. The sum of the distances of the vertex (0, b) from 
the foci is equal to 2]/ b2 +  c2. The sum of the distances 
of the vertex (a, 0) from the foci is equal to 2a. Hence

Y  b2 -\-c2 =  a ,

and, consequently,
c = y a2— b2.

The equation of the hyperbola is

We then compare the difference between the distances of 
the point on the hyperbola with the abscissa c (where c is

the distance from the centre of the hyperbola to the foci) 
with the difference between the distances of the vertex 
(a, 0) from the foci. This comparison yields the following 
formula for the distance e

c — Y  ci2 +  b2.
Let us mention the following optical or reflection prop­

erty of the ellipse: Rays of light emanating from one focus 
and being mirror reflected by the ellipse will come together 
at the other focus. In other words, if A (xQ, un) is a point
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on the ellipse, then the segments A t \  and AF2 form equal 
angles with the tangent line at the point A.

To prove this property it is sufficient to show that the 
ratio of the distances of the focus from the tangent line 
and from the point of tangency A does not depend on what 
focus is taken: F1 or F2.

The square of the distance of the focus F± (c, 0) from 
the point of tangency A (x0, y0) is

^  =  ( io -< ;)2 +  rf =  (a:» - (;)2+  ( &2~ t )  =

=  ^ ( l — h± ) - 2 c x 0 + b* +  c \

or, noting that a2= b2~\-c2,

AF\ =  2cxq fl2 =  (—̂  o f

The distance of the focus Fx (c, 0) from the tangent line 
at the point A (,x0, y0) is

h  ̂— k CXp - 1

where A; is a normalizing 
factor reducing the equation 
of the tangent line to the 
normal form.

Whence it follows that
h-L   k

AF1 a ’

For the other focus F2 (—c, 0) 
the same relation is obvious­
ly obtained. The assertion is thus proved.

The hyperbola possesses a similar optical property: 
Bays of light emanating from one focus seem to emanate 
from the other focus on being mirror reflected by the hyper­
bola (Fig. 46).

The optical property of the parabola consists in that 
rays of light emanating from its focus become parallel to its 
axis on being mirror reflected by the parabola.
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EXERCISES

1. Justify the following method of construction of the 
foci of the ellipse* From the vertex on the semiminor axis 
strike a circle of radius equal to the semimajor axis. 
Then the points of intersection of this circle with the 
major axis will be its foci.

2. Prove the optical property of the hyperbola.
3. Find the focus of the parabola in the canonical 

disposition.
4. Find the directrices of the conic sections in the ca- 

nonical arrangement.
5. Show that all conic sections k% given by the equa­

tions
X2 IJ2 _ .

a2 +  ?t +  b* + X ~
(where % is the parameter of the family) are confocal,
i.e. they have common foci.

6. Show that through any point of the ;n/-plane not 
belonging to the coordinate axes there pass two conic 
sections of the family kx (Exercise 5): an ellipse and 
a hyperbola.

7. Show that the ellipse and the hyperbola of the fami­
ly kx (Exercise 5) passing through the point {x0, y0) 
intersect at this point at right angles, i.e. the tangent 
lines to them at the point (,x0, y0) are mutually perpen­
dicular.

Sec. 3-7. The Diameters of a Conic Section
The diameter of an ellipse (a hyperbola) is defined as any 

straight line passing through the centre of the ellipse 
(hyperbola). The diameter of a parabola is defined as any 
straight line parallel to its axis, in particular the axis 
itself.

An arbitrary straight line intersects a conic section at 
most at two points. If there are two points of intersection, 
then the line segment with the ends at the points of 
intersection is termed the chord. A conic section has the 
following property: The mid-points of a set of its parallel 
chords lie on the diameter (Fig. 47).
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This property is obvious if the chords are perpendicular 
to the axis of symmetry. In this case the mid-points of 
the chords lie on this axis.

Consider the general case.
A family of parallel straight 
lines not parallel to the co­
ordinate axes can be speci­
fied by the following equa­
tions . ,

(<*)
y = kx +  b, k =£ 0,

where k is the same for all 
straight lines.

The equations of the ellipse 
and hyperbola can be com­
bined in the [following way:

ax2 +  py2 — 1 =  0.
The end-points of the chords 
satisfy the system of equa­
tions

ax2 +  |iy2 — 1 — 0, 
y = kx +  b.

Substituting kx +  b for y 
in the first equation, we 
find the equation which is 
satisfied by the abscissas 
xx and x2 of the end-points

Fig. 47. 

of the chord:

(a +  |3&2) z2 +  2$kbx +  p&2 — 1 =  0.

By the property of the roots of a quadratic equation
. 2 $kb

** +  * * = — 5 + p r*

Thus, the abscissa of the mid-point of the chord
x1-\~x2 __  $kb
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The ordinate yc is found by substituting xc in the equa­
tion of the chord y =  kx -f- b:

Sc =
f>k2b , , _  ab

a  +  P*8 ~r ° ~  a +  frk2 '
Whence

pk Xc'
Thus, the micl-points of the parallel chords y =  kx -f b 

lie on the straight line passing through the origin, i.e. 
through the centre of the ellipse (hyperbola). Its slope

The diameter
y = k' x

is called conjugate with respect to the diameter
y =  kx,

parallel to the chords.
Obviously, conjugacy of the diameters is a mutual 

property, since the slope of the diameter conjugate to
y = k'x

is

Let us consider the case of parabola. The coordinates of 
the end-points of the chords satisfy the system

y2, — 2px =  0, y =  kx -f b.
Eliminating x, we find the equation for the ordinates of 
the end-points:

j2 - ^ + M = 0 .

Hence, like the previous case
. 2 p

y i + v z  = “ r -
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ye = yi+Mx = JL =  const.

The mid-points of the chords lie on a straight line parallel 
to the x-axis (the axis of the parabola).

Let us mention one more property of the conjugate 
diameters: I f  a diameter intersects a conic section, then the 
tangent lines at the points of intersection are parallel to 
the conjugate diameter.

Indeed, let (x0, y0) be the point of intersection of the 
diameter y =  kx with the ellipse (hyperbola) ax2 +  (3i/2 =  
=  1. The equation of the tangent line at the point 
(z0> Vo)is axxo +  &yUo — 1 = 0 .  Its slope k' = —ctx0/$y0. 
Since the point (x0, y0) lies on the diameter y = kx, 
we have y0 =  kxQ. Therefore

which was required to be proved.

EXERCISES

1. The tangent lines to the ellipse
*2 | y2, a a2 1“ 62 — 1

have the slope k . Determine the points of tangency.
2. The chord of the ellipse

*2 | y2 _  a a2 "T b2 —

is bisected at the point (,x0, i/0). Find the slope of the 
chord.

3. Show that the ellipse allows a parametric represen­
tation:

x =  a cos t, y = b sin L
What condition is satisfied by the values of the para­
meter t corresponding to the end-points of the conjugate 
diameters? Prove that the sum of the squares of the^lengths 
of the conjugate diameters of the ellipse is constant (Apol-
6 - 0 4 0 6
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lonius’ theorem). Formulate and prove a similar theorem 
for the hyperbola.

4. Any ellipse can be represented as the projection 
of a circle. Show that in this projecting to the conjugate 
diameters4of the ellipse there correspond the mutually 
perpendicular diameters of the circle. Relying on this 
fact, prove that the area of the parallelogram formed by 
the tangent lines at the end-points of the conjugate dia­
meters is constant.

5. Show that the area of any parallelogram with the 
vertices at the end-points of the conjugate diameters of 
the ellipse

4*2 jj 2

has one and the same value equal to 2ab.
6. It is known that of all the quadrilaterals inscribed in 

a circle the square has the greatest area. Show that among 
all the quadrilaterals inscribed in the ellipse the paralle­
lograms with the vertices at the end-points of the conju­
gate diameters have the greatest area.

7. Show that the area of the ellipse with the semi-axes 
a and b is equal to nab.

8. Is it possible to inscribe a triangle in an ellipse so 
that the tangent line at each of its vertices is parallel to 
the opposite side? With what arbitrariness can it be done? 
What is the area of this triangle if the semi-axes of the 
ellipse are a and b.

Sec. 3-8. Second-Order Curves 
(Quadric Curves)

A curve of the second order is defined as the locus of 
points in the plane whose coordinates satisfy an equation 
of the form

an x2 +  2a12xy -f a22y2 +  2axx +  2a2y +  a =  0, (*)
in which at least one of the coefficients au , a12, a22 
is non-zero.

Obviously, this definition is invariant relative^to the 
choice of the coordinate system, since the coordinates of a
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point in any other coordinate system are expressed linearly 
in terms of its coordinates in the ^-system and, conse­
quently, the equation in any other coordinate system 
will have the form (*).

Let us find out the geometrical meaning ot second-order 
curves. We put the curve in the new coordinate system 
x y '  which is related to the zy-system by the formulas

x =  x' cos a  +  y' sin a, 
y =  —x sin a  -f- y( cos a.

The equation of the curve, preserving the form (♦), 
will have in the x 'y '-system the coefficient
2a\ =  2an  cos a sin a  — 2a22 sin a cos a  +

+  2a12 (cos2 a  — sin2 a) =
=  (an  — a22) sin 2a -f- 2a12 cos 2a.

Obviously, it is always possible to choose the angle a  
so that this coefficient is equal to zero. Therefore, without 
limiting the generality, we may regard that in the initial 
equation (*) a12 =  0.

Further on we shall distinguish two cases:
Case A: both coefficients an  and a22 are non-zero.
Case B : one of the coefficients an  or a22 is equal to 

zero. Without limiting the generality, we shall consider 
an  = 0.

In case A, by passing over to the dew coordinate sys­
tem x'y ' ,

x> = x+ ir >  y ,= y + i r *all a22
we bring the equation (*) to the form

an x'2 +  a22i/'2 +  c = 0 (**)
and consider the following subcases:

Ax: c ^  0, an  and a22 are of the same sign which is 
opposite to the sign of c. The curve is obviously an ellipse.

A2: c '=£=■ 0, an  and a22 have different signs. The curve 
is a hyperbola.

A3: c 0, an , a22, and c have the same sign. None 
of the real points satisfies the equation. The curve is 
called imaginary.
6*
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A4: c — 0, an  and a22 have different signs. The curve 
decomposes into two straight lines, since the equation 
(**) can be written in the form

A5: c = 0, au and a22 have the same sign. The equa­
tion can be written in the form

The curve decomposes into a pair of imaginary straight 
lines intersecting at a real point (0, 0).

Let us now consider Case B.
In this case by passing over to the new coordinate 

system xy ':

*' =  *. »' =  ff +  7 Sa22
the equation is reduced to the form

2axx' +  a22y '2 +  c ~  0. (***)
We then distinguish the following subcases:
B2: ax 0. The curve is a parabola, since by passing 

over to the new coordinates

y" = y ' 1
the equatoin (***) is reduced to the form 

2 axx" +  a220 "2 =  0-
B2: ax =  0, a22 and c have different signs. The curve 

decomposes into a pair of parallel straight lines

B3: ax =  0, a22 and c are of the same sign. The curve 
decomposes into a pair of imaginary non-intersecting 
straight lines
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B4: ax = 0, c = 0. The curve is a pair of coinciding 
straight lines.

Thus, a real curve of the second order represents either 
a conic section (the ellipse, hyperbola, parabola), or a pair 
of straight lines (which may even coincide).

EXERCISES

1. Show that the second-order curve
(ax + by +  c f  — (axx +  bxy +  c,)2 =  0

decomposes into a pair of straight lines, may be coincid­
ing ones.

2. As is known, all points of the ellipse are situated 
within a bounded portion of the xy-plane. Proceeding 
from this fact, show that the second-order curve (ax +  
+  by +  c)2 +  (ax +  |3i/ +  y)2 =  A2 is an ellipse if the 
expressions ax +  by and ax +  fiy are independent and 
k > 0.

3. Show that the second-order curve
(ax + by +  c) (ax + $y +  y) =  k =£ 0

is a hyperbola, provided the expressions ax +  by, ax +  
+  are independent.

4. Show that the second-order curve
(ax +  by +  c)2 — (ax +  |3y +  y)2 =  k =£ 0,

is a hyperbola if ax +  by, ax +  jiy are independent.
5. Show that if a straight line intersects a second- 

order curve at three points, then the curve decomposes 
into a pair of straight lines may be coinciding ones.

6. Show that if two indecomposable curves of the 
second order have five points in common, then they 
coincide.

7. A curve is termed a third-order curve if it is speci­
fied by the equation cp3 (x, y) = 0, where cp3 (x, y) is 
a polynomial of the third degree with respect to x and y. 
Show that if a third-order curve y3 has seven points in 
common^with an indecomposable second-order y2, then 
it decomposes into the curve y2 and a straight line.
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8. Let 7 be a second-order curve, A l9 . . Ae the 
vertices of a hexagon inscribed in it, (x, y) =  0 the
equations of the sides joining A t and Aj (Fig. 48). Show 
that the third-order curve a 24a 16a 35 — ^ct34a 26a 15 =  0

intersects the curve 7 at six points A t. Show that by 
a suitable choice of the parameter X we can obtain a third- 
order curve which decomposes into the curve 7 and a 
straight line.

9. Prove Pascal's theorem: The three points of inter­
section of the pairs of straight lines a 15 and a 24, a 34 
and a 16, a 26 and a 35 lie on one line (Fig. 48).



Chapter 4 

Vectors

Sec. 4-1. Addition and Subtraction of Vectors
In geometry, a vector is understood as a directed line 

segment (Fig. 49). The direction of a vector is indicated 
by the arrow. A vector with initial point A and terminal
point B is denoted as AB. A vector can also be denoted

by a single letter. In printing this letter is given in_bold- 
face type (a), in writing it is given with a bar (a).

Two vectors are considered to be equal if one of them 
can be obtained from the other by translation (Fig. 50). 
Obviously, if the vector a is equal to 6, then b is equal 
to a. If a is equal to &, and b is equal to c, then a is equal 
to c.

The vectors are said to be in the same direction (in oppo­
site directions) if they are parallel, and the terminal points 
of two vectors equal to them and reduced to a common 
origin are found on one side of the origin (on different 
sides of the origin).

The length of the line segment depicting a vector is 
called the absolute value of the vector.

A vector of zero length (i.e. whose initial point coincides 
with the terminus) is termed the zero vector.
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Vectors may be added or subtracted geometrically,
i.e. we may speak of addition and subtraction of vectors. 
Namely, the sum of two vectors a and b is a third vector 
a +  b which is obtained from the vectors a and b (or 
vectors equal to them) in the way shown in Fig. 51.

Vector addition is commutative, i.e. for any vectors 
a and b (Fig. 52).

a 4- b = b +  a

Vector addition is associative, i.e. if a, 6, c are any 
vectors then

{a -f b) +  c = a +  (b +  c).

This property of addition, as also the preceding one, 
follows directly from the definition of the operation of 
addition (Fig. 53).

Let us mention here that if the vectors a and b are paral­
lel, then the vector a +  b (if it is not equal to zero) 
is parallel to the vectors a and &, and is in the same direc­
tion with the greater (by absolute value) vector. The 
absolute value of the vector a +  b is equal to the sum 
of the absolute values of the vectors a and b if they are 
in the same direction, and to the difference of the absolute 
values if the vectors a and b are in opposite directions.

Subtraction of vectors is defined as the inverse opera­
tion of addition. Namely, the difference of the vectors 
a and b is defined as the vector a — b which, together
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with the vector 6, yields the vector a. Geometrically it is 
obtained from the vectors a and b (or vectors equal to 
them) as is shown in Fig. 54.

For any vectors a and b we have the following inequality
| a +  6 | | a |  +  | & |

(ithe triangle inequality), geometrically expressing the fact 
that in a triangle the sum of its two sides is greater than

the third side if the vectors are not parallel. This in­
equality is obviously valid for any number of vectors:

| a + 6 + . . *  +  M ^  I ® I +  I & I +  . . • +  1^1*

EXERCISES

1. Show that the sum of n vectors reduced to a com­
mon origin at the centre of a regular ra-gon and with 
the terminal points at its vertices is equal to zero.

2. Three vectors have a common origin O and their 
terminal points are at the vertices of the triangle ABC. 
Show that

OA +  OB +  OC =  0
if and only if 0  is the point of intersection of the medians 
of the triangle.

3. Prove the identity
2 | a  |2 +  2 | 6 |2 =  | a +  6 |2 +  I a -  b |2.
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To what geometrical fact does it correspond if a  and b 
are non-zero and non-parallel vectors?

4. Show that the sign of equality in the triangle in­
equality^ takes place only when both vectors are in the 
same direction, or at least one of the vectors is equal to 
zero.

5. If the sum of the vectors . . ., r n reduced to 
a common origin 0  is equal to zero and these vectors are 
not coplanar, then whatever is the plane a passing through 
the point 0  there can be found vectors r t situated on 
both sides of the plane. Show this.

6. The vector r mn lies in the xy-plane; its initial 
point is (x01 y0) and the terminus is the point (mS, n8), 
where m and n are whole numbers not exceeding M  and N  
by absolute value, respectively. Find the sum of all the 
vectors r mn expressing it in terms of the vector with 
the initial point at (0, 0) and the terminus at the point
(•£(n Vo) -

7. A finite figure F in the xy-plane has the origin as the 
centre of symmetry. Show that the sum of the vectors with 
a common origin and termini at the points whose coor­
dinates are whole numbers of the figure F is equal to zero 
if and only if the origin of coordinates serves as their 
common initial point. (It is assumed that the figure F has 
at least one point whose coordinates are whole numbers.)

8. Express the vectors represented by the diagonals of 
a parallelepiped in terms of the vectors represented by 
its edges.

Sec. 4-2. Multiplication of a Vector 
by a Number

Vectors may also be multiplied by a number. The 
product of the vector a by the number X is defined as the 
vector aX = Xa the absolute value of which is obtained 
by multiplying the absolute value of the vector a by 
the absolute value of the number X, i.e. | Xa | =  | X | | a |, 
the direction coinciding with the direction of the vector 
a or being in the opposite sense depending on whether 
X >  0 or X <  0. If X =  0 or a =  0, then Xa is considered 
to be equal to the zero vector.
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The multiplication of a vector by a number possesses the 
associative property and two distributive properties. Namely, 
for any number X, p and vectors a, b

X (jxa) =  (X\i) a {associative property)
{X~\-\x) a = Xa + \ia, 1
X ( a  +  b )  =  X a  +  U  1 id U l r U m t iv e  p r o p e r t i e s )

Let us prove these properties.
The absolute values of the vectors X (pa) and (ft,p) a 

are the same and are equal to | X | | p | | a  1. The direc­
tions of these vectors either coincide, if X and p are of the 
same sign, or are opposite if X and p have different signs. 
Hence, the vectors X (\ia )  and (A,|ut) a  are equal by absolute 
value and are in the same direction, consequently, they 
are equal. If at least one of the numbers X, p or the vector 
a is equal to zero, then both vectors are equal to zero 
and, hence, they are equal to each other. The associative 
property is thus proved.

We are now going to prove the first distributive prop­
erty:

{X +  |li) a — Xa +  pa.

The equality is obvious if at least one of the numbers X, 
p or the vector a is equal to zero. Therefore, we may con­
sider that X, p, and a are non-zero.

If X and p are of the same sign, then the vectors Xa 
and pa are in the same direction. Therefore, the absolute 
value of the vector Xa +  pa is equal to ] 7ui | +  | pa | =  
=  | X | | a  | +  | pT| | a | =  (| X | +  I p |) | a |. The ab­
solute value of the vector (X +  p) a is equal to | X +  
-f- p | | a | =  (| X | +  | p |) | a |. Thus, the ' absolute 
values of the vectors (X +  p) a and Xa \m are equal 
and they are in the same direction. Namely, for X >  
>  0, p >  0 their directions coincide with the direction 
of a, and if X <  0, p <  0 they are opposite to a. The 
case when X and p have different signs is considered in 
a similar way.

Let us prove the second distributive property:
X {a 4~ b) =  Xa 4~ Xb»
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The property is obvious if one of the vectors or the 
number X is equal to zero. If the vectors a and b are paral­

lel, then 6 can be represent­
ed in the form b =  pa. 
And the second distributive 
property follows :from the 
first one. Indeed,

M l +  H) a =
=  X (a +  pa) =  Xa +  Xpa.
Hence,

A, (a +  6) =  Aa +  A&.
Let a and b be non-paral­

lel vectors, then for X > 0
the vector AB  (Fig. 55) represents, on the one hand,
Xa -f A6, and XAC equal to X {a +  b) on the other. If 
X <  0, then both vectors reverse their directions.

EXERCISES

1. The vectors rv  r 2, . . .  are called linearly indepen­
dent if there exist no numbers X1, A2, . . ., (at least one of 
which is non-zero) such that

V i  +  Kr* +  - • • =  o

Show that two vectors are linearly independent if and 
only if they are non-zero and non-parallel.

Show that three vectors are linearly independent when 
and only when they are non-zero and there is no plane 
parallel to them.

2. Show that any three vectors lying in one plane are 
always linearly dependent.

3. Show that if two vectors r x and r 2 in a plane are 
linearly independent, then any vector r in this plane 
is expressed linearly in terms of r1 and r 2

r  =  +  A2r 2.
The numbers Xx and X2 are defined uniquely.
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4. Show that if three vectors rx, r 2, r 3 are linearly 
independent, then any vector r  is uniquely expressed in 
terms of these vectors in the form

r  =  V *! +  %2r 2 +  l 3r 3.

Sec. 4-3. Scalar Product of Vectors
The angle between the vectors a and b is defined as the 

angle between the vectors equal to a and 6, respectively, 
reduced to a common origin (Fig. 56).

Fig. 56.

The scalar product of a vector a by a vector b is defined 
as the number ab which is equal to the product of the 
absolute value of the vectors by the cosine of the angle 
between them.

The scalar product possesses the following obvious proper­
ties which follow directly from its definition:

(1) ab — ba;
(2) a2 =  aa =  | a |2;
(3) (ha) b = h (ab);
(4) if | e | =  1, then (he) (p,e) =  Xp,;
(5) the scalar product of vectors a and b is equal to zero 

if and only if the vectors are mutually perpendicular or one 
of them is equal to zero.

The projection of a vector a on a straight line is defined 
as the vector a whose initial point is the projection of the 
initial point of the vector a and whose terminal point is the 
projection of the terminal point of the vector a. Obviously,
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equal vectors have equal projections, the projection of the 
sum of vectors is equal to the sum of the projections (Fig. 57)*

The scalar product of a vector a by a vector b is equal 
to the scalar product of the projection of the vector a 
onto the straight line containing the vector b by the vec­
tor b. The proof is obvious. It is sufficient to note that 
ab and ab are equal by absolute value and have the same 
sign.

The scalar product possesses the distributive property• 
Namely for any three vectors a, 6, c

(a +  b) c =  ac +  be.
The statement is obvious if one of the vectors is equal 

to zero. Let all the vectors be non-zero. Denoting by 
a, 6, a-\- b the projections of the vectors a, 6, and 
a +  b onto the line containing the vector c, we have

{a -(- h) c = {a +  b) c =  (a -f b) c, 
ac + be = ac -1- be.

Let e be a unit vector parallel to c. Then a, 6, and c 
allow the representations a =  he, b =  \ie1 c = ve. We 
obtain

(a + b) c =  (Xe +  \ie) ve =  (X -f- \i) v, 
ac + be =  Xeve +  \ieve =  Xv +  ptv.

Whence

and, hence,
(a +  6) c =  ac +  be

(a +  6) c = ac +  be.

In conclusion we are going to show that if a , 6, c 
are non-zero vectors which are not parallel to one plane, 
then from the three equalities

ra =  0, rb ~  0, rc =  0
it follows that r = 0.
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Indeed, if r #  0, then from the above three equalities 
it follows that the vectors a, &, c are perpendicular to r, 
and therefore parallel to the plane perpendicular to r 
which is impossible.

EXERCISES

1. Let A v A 2, . . A n be the vertices of a regular
rc-gon. Then A XA 2 +  A 2A 3 +  . . . +  A nA x =  0. Derive 
from this that

A , 2ji . 4n . | (2/z — 2) jt n1 -I- cos----- 1- cos----- \- • • . “f- cos------------— 0,1 n ' n n
. 2jt . . 4n . . . (2n — 2)n nsm —  +  sin—- +  • • • +sm -i— ——  =  0.n 71 7i

2. Show that if a and 6 are non-zero and non-parallel 
vectors, then X2a? +  2pA (ab) +  p262 >  0, the equality 
to zero taking place only if X =  0, and p =  0.

3. Show that for any three vectors rv  r 2, r 3 parallel to 
one and the same plane

r tr i r {r 2 r xr z 
r 2r f r 2r 2 r 2r 3 
*Vi r 3r 2 r 3r 3

=  0 . (*)

4. Show that three vectorsrx, r 2, r 3are linearly depen­
dent if and only if the condition (*) is fulfilled for them.

r3> ^4at for any four vectors r i, r
TV*! »’i^3
W r zr 2 n r 3 =  0.
r 3r t r 3r 2 r 3r 3 r sr k
1\Vi r kr z n n

6. Let lx, Z2, Z3, and Z4 be four rays emanating from 
one point, and a tj the angle between the rays Zi and lj. 
Show that in this case we have the identity

1 cos ai2 cos ai3 cos a 14 
cosa21 1 cosa23 cosa24 _ q  
cos a31 cos a32 1 cos a34
cos a41 cos a42 cos a 43 1
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Sec. 4-4. The Vector Product of Vectors
The vector product of a vector a by a vector & is a third 

vector a X b defined in the following way. If at least 
one of the vectors a, b is equal to zero or the vectors are 
parallel, then a X b =  0. In other cases this vector (by 
its absolute value) is equal to the area of the parallelo­
gram constructed on the vectors a and b as sides and is

directed perpendicular to the plane containing this paral­
lelogram so that the rotation in the direction from a to b 
and the direction of a X & form a “right-hand screw” 
(Fig. 58).

From the definition of the vector product it directly fol­
lows:

(1) a X b — —b X a;
(2) | a X b | =  | a | \b \ sin 0, where 0 is the angle 

formed by thei vectors a and 6;
(3) (Ka) ’ x 6 =  X ( a x  b).
The projection of a vector a on a plane is defined as the 

vector a' whose initial point is the projection of the initial 
point of the vector a and whose terminal point is the pro­
jection of the terminal point of the vector a . Obviously, 
equal vectors have equal projections and the projection 
of the sum of vectors is equal to the sum of the projec­
tions (Fig. 59).

Suppose we have two vectors a and b. Let a denote 
the projection of the vector a on the plane perpendicular

Fig. 58. Fig. 59.
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to the vector b (Fig. 60). Then
a X  b = a! X 6.

The proof is obvious. It is sufficient to mention that 
Ihe vectors a X b aucl a* X b have equal absolute values 
and are in the same direction.

The vector product possesses a distributive property, i.e. 
for any three vectors a , 6, c

The assertion is obvious if c =  0. It is then obvious that 
the equality (*) is sufficient to be proved for the case

I c | =  1, since in the general case it will then follow the 
above mentioned property (3).

So, let | c | =  1, and let a' and &' denote the projec­
tions of the vectors a and b on the plane perpendicular 
to the vector c (Fig. 61). Then the vectors a' X  c, b' x  c 
and (a '  +  &') X c are obtained from the vectors cT, br, 
and a +  &\ respectively, by a rotation through an angle 
of 90°. Consequently,

(a +  b) X  c =  a X  c - f  6 X c.

u

Fig. 60. Fig. 61.

(a' +  6 ') X c =  a x  c + V  X c.
And since

af X  c =  a X  c, V  X c = b X  c, 
(a' +  6 ') X c =  (a +  6) X c>

we get
( a + 6) Xc? =  a X c - f - 6 x c ,  

which was required to be proved.
7 - 0 4 0 6
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Let us mention the following simple identity which 
is true for any vectors a  and b :

( a  X  b y  =  «2fe2 -  { o b f .

Indeed, if 0 is the angle between the vectors a  and &, 
then this identity expresses that

(| a  | | b  | sin 0)2 =  I a  |2 \b |2 — (| a  | | b  | cos 0)2 
and, consequently, is obvious.

EXERCISES

t. If the vectors a  and b are perpendicular to the vector 
c, then

( a X  b )  X  c  —  0.
Show tins.

2. If the vector b  is perpendicular to c, and the vector a  
is parallel to the vector c, then

( a  X  b )  X c  =  b  ( a c ) .

Show this.
3. For an arbitrary vector a  and a vector b  perpendic­

ular to c
( a  X  b )  X  c  =  b  (ia c ).

Show this.
4. Show that for any three vectors a, fe, c

( a  X  b )  X  c  =  b  ( a c )  — a  ( b e ) .

5. Find the area of the base of a triangular pyramid 
whose lateral edges are equal to Z, the vertex angles 
being equal to a, p, y.

Sec. 4-5. The Triple Product of Vectors
The triple (scalar) product of vectors a , 6, c  is the 

number
( a b c )  =  ( a  X  b )  c . (*)

Obviously, the triple product is equal to zero if and only 
if one oj the vectors is equal to zero or all three vectors are 
parallel to one plane.
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The numerical value of the triple product of non-zero 
vectors a, 6, c which are not parallel to one plane is 
equal to the volume of the parallelepiped of which the 
vectors a, 6, c are coterminal sides (Fig. 62).

Indeed, a X b =  S e, where S is the area of the base 
of the parallelepiped constructed on the vectors a , ft, 
and e is the unit vector perpendicular lo the base. Further, 
ec is equal up to a sign to the altitude of the parallelepided 
dropped onto the mentioned 
base. Consequently, up to 
a sign, (abc) is equal to the 
volume of the parallelepiped 
constructed on the vectors 
«, 6, and c.

The triple product possesses 
the following property

{abc) =  a (b X c). (**)
It is sufficient to note that 

the right-hand and the left- 
hand members are equal by absolute value and have the 
same sign. From the definition (*) of the triple product 
and the property (**) it follows that an interchange of any 
two factors reverses the sign of the triple product. In  part­
icular, the triple product is equal to zero if two factors are 
equal to each other.

EXERCISES
1. Noting that

{{a X b) X c) <1 {a X 6) (c X rf), 

derive the identity

{a x  b)(c x  d) =
ae a d  
be bd

2. With the aid of the identity
{a x b) (c X b) = (ac)  b 2 —  (ab)  (be) 

derive the formula of spherical trigonometry 
sin a sin y cos B =  cos p — cos y cos a,

7*
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where a, p, y are the sides of a triangle on the unit 
sphere, and B is the angle of this triangle opposite to the 
side |5.

3. Derive the identity
( a  X b )  X ( c  X d )  =  b  ( a c d )  —  a  ( b e d ) ,

4. Show that for any four vectors 6, c, d
b  ( a c d )  —  a  ( b e d )  +  d  ( c a b )  —  c  ( d a b )  =  0 .

5. Let ex, e2, e3 he any three vectors satisfying the 
condition

(C1 &2&3) 0*
Then any vector r  allows the representation

r  =  (re2e8) ei +  (re8<h) 2̂ . ( rexe2) e3 
(exe2e3) ' (exe2e3) ' (exe2es) •

Show this.
6. Show that the solution of the following system of 

vector equations
( r o b )  =  y , ( r b c )  =  a ,  ( r c a )  =  |3,

where a, 6, c are the given vectors satisfying the con­
dition

( a b c )  =7̂= 0,

and r  is the required vector, can be written in the form

' ’ =  777tj-(rta +  6p +  <,Y)-
7. Show that if ex, e2, es and r  are any four vectors 

satisfying the only condition (exe2e3) =/= 0, then the fol­
lowing identity takes place

=  (<?1 X e2) (rc2) (e2 X e3) (rex) , {e3Xe})(re2)
(e^c2e2) (exe2e3) r  (exe2e3)

8. Show that the solution of the system of vector equa­
tions

a x  =  a ,  b x  =  P, e x  =  y,

400



Ch. 4. Vectors 101

where a, 6, c are the given vectors and x  is the required 
vector satisfying the condition (abc) =#= 0, can be written 
in 111© form

(ax  0) v +  (* X c) a +  (c X a) p 
(ft&c)

Sec. 4-6. The Coordinates of a Vector Relative 
to a Given Basis

Let ex, e2, e3 be any non-zero vectors not parallel to one 
plane. Then any vector allows a unique representation of 
the form

r =  hyCy +  ^2^2 “1“ 3̂̂ 3* (*)
The numbers ^lf X2, %3 are called the coordinates of 
the vector r  relative to the basis el9 e2, <-3*

Let us first prove that tlie representation (*) is unique. 
Suppose there exists another representation:

r = 'k\e1 +
Then

(̂ 1 — ^f) ei H" (̂ 2 — 2̂) (̂ 3 — 3̂) e3 =  0.
Multiplying this equality scalarly by the vector e2 X e3l 
we get

(̂ 1 ^l) (^1^2^3) “
Since (e1e2e3) 0, then — K[ =  0. Analogously, we
conclude that X2 — %2 = 0, X3 — A,' =  0. The uniqueness 
of the representation (*) is proved.

Let us now prove the possibility of the representation 
(*). Suppose the vector/* is parallel to any of tlie vectors 
ev e2, say ex. Then

where the plus sign is taken if tlie vectors r  and ex are in 
the same direction, the minus sign being taken if they 
are in opposite directions.

Let now I lie vector r, together with the vectors ex 
and ev  be parallel to one plane, but is not parallel either
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to the vector ev  or to the vector e2. We draw through 
the end-poinls of the vector r straight lines parallel to 
the vectors ex and e2 (Fig. 63). Then

r =  rt -f r t .
]-uL we have proved that

Hence,
**1 — ^1^11 r 2 — 2̂̂ 2* 

r = % 1e 1 A2<?2*
Let, finally, the vector r, together with no pair of vec­

tors ev e2\ e2, e3\ e3, ex be not parallel to one plane.

We draw through the end-points of the vector r  planes 
parallel to the mentioned pairs of vectors (Fig. 64). Then

r = rx +  r 2 +  r3,
and since we proved that

*T =  r 2 —  3 ==

we have
V =  +  ^2^2 “t“ ^3e3*

Thus, the possibility of representation of the vector r 
in the form (*) is proved in all the cases.



Ch. 4. Vectors 103

The coordinates of a vector have a simple meaning 
if the basis consists ol* three pairwise orthogonal unit 
vectors.

Indeed, multiplying the equality r =  K1e1 +  X2e2 -f 
+  Xned in turn by el5 c2, es ancl noting that e\ — e\
=  e\ =  1, and e1e2 = e2e3 =  e3et =  0, we get

Xx = ret , X2 =  re a, A,3 =  re 3.

Let r be a vector with the coordinates X2, X3, 
and r ' a vector with the coordinates X\, X'2, We then 
find the coordinates of the vector r  ±  /,#. Wc have

r =  +  ^2^2 4" 3̂̂ 3*
r '  =  X;ej +  X2e2 + K ea-

Whence r ±  r =  ±  A/J) -f (^2 ±  2̂) e2 +
H- (>̂3 i  A/3) <?3. Hence, ^  i  X15 I2 i  ^2’ ^3 — 3̂ 8̂*0 
the coordinates of the vector r ± r \

We show in a similar way that the vector Xr has the 
coordinates AA1? XX2, XX3. Hence it follows that parallel 
vectors have proportional coordinates.

Let the basis el7 e2, e3 consist of three pairwise perpen- 
diciilar unit vectors whose triple product is equal to +1. 
We now find the scalar product of the vectors r and /•' with 
the coordinates X1, X2i X3 and X[, X[v X!(, respectively.

We have
r  =  X̂ ê  -|- A,2e2 -\- X3e3l r' =  X1e1 -1- X2e2 4~ ^^3- (**)

Whence, taking into account that =  e\ — el =  1, 
e1e2 ~  e 2ez =  3̂̂ 1 =  we get

w  =  -j- X2X2 H- X3Xr

Let us find the coordinates of the vector r  X r \  Taking 
into consideration the representations (**) for the vectors 
r, r and the relations el X e2 =  e3, e2 X e3 = ev e3 X 
X 61 =  e2, we obtain

r X r ’ =  (X2X3 — A3A') +  (A3A'j ~  Â A') -f
+  (̂ 1̂ 2 — e3.
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Hence tlie coordinates of the vector r  X r ':
A2 A3 3̂ 1̂ Aj %2,
A2 a3 » j

K K
We finally compute the triple product of the vectors

r (K K,  *d)> r' (A4, K> K)* r m (AJ, A£, A:). 

We have 
(rr'r") =  (r X r )  r"  =

2̂ Ag 
2̂

Xz h
K K K
K K K

a; +
A,3
a: a;

A2 -j-
Aj A2
a: a; K*

EXERCISES

1. Show that the coordinates of the vector r  relative to 
the basis e1? e 2, are given by the equalities

* (rc2c.j) « _  (^e.^1) * _  (Wjfiz)
1 (Ci«8c3) ’ 2 ’ 3 (̂ iC2c3) •

2. Show that the coordinates of the vector r  relative
to the basis (e2 «>), (e , X (̂ 1 X ^2) aie respec­
tively equal to

1 rCl \   rC2 J, re3
1 (cie2e8) ’ 2 (e^aCa) ’ 3 (e1e.2e^ ’

3. Decomposing the vectors a , &, c, on the orthogonal
basis, prove the identity

(cibc)2
a a  ab  ac  
h a  bb be , 
c a  eb ec

using the determinant multiplication theorem. 
4. Prove the identity

(a X b, b X c, c X a) =  (a&c)2.



Ch. 4. Feciors 105

5. Show that the volume of a triangular pyramid with 
the lateral edges a, 6, c and face angles a, p, y is

V =  —
1

cos y
COSp

cos y
1

COS P 1/2

cos a
cos a  1

6, Derive the formula for the volume of a triangular 
pyramid with the lateral edges a, 6, c and the dihedral 
angles at these edges A, Z?, C.



Chapter 5

Rectangular Cartesian Coordinates 
in Space

Sec. 5-1. Cartesian Coordinates
Let us draw from an arbitrary point 0  in space three 

straight lines Ox, Oy, Oz not lying in one plane, and lay 
off on each of them from tlie point 0  three non-zero 
vectors ex, ey, e z (Fig. 65). According to Sec. 4-6, any
vector OA allows a unique representation of the form 

OA =  xex +  yev +  zez.
The numbers x, y, z are called tlie Cartesian coordinates 
of a point A.

The straight lines Ox, Oy, Oz are termed the coordinate 
axes: Ox is the #-axis, Oy is the y-axis, and Oz is the 2-axis. 
The planes Oxy, Oyz, Oxz are called the coordinate planes: 
Oxy is the 07/-plane, Oyz is tlie yz-plane, and Oxz is the 
.rz-plane.

Each of the coordinate axes is divided by the point 0  
(i.e. by the origin of coordinates) into two semi-axes. 
Those of the semi-axes whose directions coincide with 
the directions of the vectors ex, ey, e z are said to be 
positive, the others being negative. The coordinate system 
thus obtained is called right-handed if (exeye z) > 0 ,  and 
left-handed if {exeye^  <  0.

Geometrically the coordinates of the point A are obtained 
in the following way. We draw through the point A 
a plane parallel to the z/2-plane. it  intersects the £-axis 
at a point A x (Fig. 66). Then the absolute value of the 
coordinate x of the point A is equal to the length of the 
line segment OAx as measured by the unit length I ex |.
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11 is positive if A x belongs to the positive semi-axis x, 
and is negative if A x belongs to the negative semi-axis x . 
To make sure of this it is sufficient to recall how the coor­
dinates of the vector OA relative to the basis ex, ey, e t 
are determined. The other two coordinates of the point 
(y and z) are determined by a similar construction.

If the coordinate axes are mutually perpendicular, and 
ex, (-y, e z are the unit vectors, then the coordinates are 
called the rectangular Cartesian coordinates.

Cartesian coordinates on the plane are introduced in 
a similar way. Namely, we draw from the point 0  (i.e. 
from the origin of coordinates) two arbitrary straight 
lines Ox and Oy (the coordinate axes) and lay off on 
each axis (from the point 0) a non-zero vector. Thus we 
obtain the vectors ex and ey. The Cartesian coordinates 
of an arbitrary point A are then determined as the coor­
dinates of the vector OA relative to the basis ex, ey.

Obviously, if the coordinate axes are mutually perpen­
dicular, andetY, ev are unit vectors, then the coordinates 
defined in this way coincide with those introduced in 
Sec. 1-t and are called the rectangular Cartesian coordi­
nates.

Below, as a rule, we shall use the rectangular Cartesian 
coordinates. If otherwise, each ca.se will be supplied with 
a special mention.

x
Fig. 65. Fig. 66.



108 Analytical Geometry

EXERCISES

1. Where are the points in space located if: (a) x =  0; 
(b) y =  0; (c) z =  0; (d) x =  0, y =  0; (e) [/ =  0, z =  
=  0; (f) z =  0 ,«  =  0?

2. How many points in space satisfy the following con- 
d itions

| x | =  a, | y | =  6, | 2 | =  c, if «6c 0?

3. Where are the points in space situated if
\x  | <  a, | z/ | <  6, | 2 | <  c?

4. Let 4  be a vertex of a parallelepiped, A z, A z 
the vertices adjacent to A , i.e. the end-points of the edges 
emanating from A. Find the coordinates of all the ver­
tices of the parallelepiped, taking the vertex A for the 
origin and the vertices A u A 2, A z for the end-points 
of the basis vectors.

5. Find the coordinates of the point into which the 
point (x, z/, z) goes when rotated about the straight line 
joining the point A 0 (o, fr, c) to the origin through an 
angle of a  =  n/2. The coordinate system is rectangular.

6. Solve Exercise 5 for an arbitrary ct.

Sec. 5-2. Elementary Problems 
of Solid Analytic Geometry

Let there be introduced in space Cartesian coordinates 
xyz and let A x {xx, z/x, zx) and A 2 (x2, z/2, z2) be two 
arbitrary points in space. Find the coordinates of the point A 
which divides ike line segment A XA 2 in the ratio Xx : %2 
(Fig. 67).

The vectors A XA and A A 2 are in the same direction, 
and their absolute values are as XL : X2. Consequently,
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Whence
/ T a  _ _  ^ 2 ^ 1  T  ^ 1 ^ 2

UA~  h+^2 ’
Since the coordinates of the point A (a?, //, z) are the 

same as the coordinates of the vector OA, we have
_  ^ 23>l  +  ^ 1 X 2

h+^2 '
_  ^2.?/ l  +  ^ l//2  

Xj+Xo ’
„ _ ^2^1 T  ^ l z 2
2“  xt +  x2 *

Let the coordinate system be rectangular. Express the 
distance between the points A 1 and /12 in terms of their 
coordinates.

The distance between the points A 1 and ^t2 is equal
to the absolute value of the vector A (Pig* 68). We 
have

A tA 2 =  OA2 — Od3 =  e* (x2 — ajj) +  (j/2 — /yx) +
4 " e z (z 2 —  z l ) ’

Whence
O M s)2 =  (a-2 — z j 2 +  (j/a — ^x)2 +  (z2 — Zj)2.
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Express the area of a triangle in the xy-plane in terms 
of the coordinates of its vertices: A x (xx, yx, 0), A 2 (^2, z/2, 
0), and A 3 (x3, ys, 0).

The absolute value of the vector A 3A 2 X A XA S is 
equal to twice the area of the triangle A XA 2A 3;

AtA2 x AiAs ~  ez
X2— Xi
X3 x i

V2 — Ul
y*—vi

Consequently, the area of the triangle
•z2—*1 y 2—1/1 
* 3 — ^1 Us y 1

Express the volume of a tetrahedron A XA 2A ZA 4 in terms 
of the coordinates of its vertices.

The triple scalar product of the vectors A XA 2, A XA S>
A:A 4 is equal (up to a sign) to the volume of the paralle­
lepiped constructed on these vectors and, consequently, 
to six times the volume of the tetrahedron A XA 2A 3A 4. 
Hence

V = 1_
6

# 2  —  x i

X3 — Xi
Xk —  x i

Vz — Hi *2 — Zl 
Ua— yi z3 zi 
^ 4  — J/l  24  —  Z t

EXERCISES

1. Find the distance between two points expressed 
in terms of Cartesian coordinates if the positive semi- 
axes form pairwise the angles a, |5, y, and ex, ey, e z 
are unit vectors.

2. Find the centre of a sphere circumscribed about 
a tetrahedron with the vertices (a, 0, 0), (0, b, 0), 
(0, 0, c), (0, 0, 0).

3. Prove that the straight lines joining the mid-points 
of the opposite edges of a tetrahedron intersect at one 
point. Express the coordinates of this point in terms of 
the coordinates of the vertices of the tetrahedron.

4. Prove that the straight lines joining the vertices 
of a tetrahedron to the centroids of the opposite faces
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intersect at one point. Express its coordinates in terms 
of the coordinates of the vertices of the tetrahedron.

5. Let A t (Xi, ifi, zt) be the vertices of a tetrahedron. 
Show that the points with the coordinates

X =  4~ ^2^2 4  4~
V — \U l +  ^2^2 +  3̂*/.3 4  *404.
Z =  +  A-2^2 4 “ ^ 3Z3 4  ^ 4 Z4

are situated inside the tetrahedron if Xx > 0 ,  X2 > 0 ,
^3 ^4 >0? 4" ^2 "I" ^3 4  4  “  ^

6. Express the area of an oblique triangle in terms of 
the coordinates of its vertices. The coordinate system is 
rectangular.

7. Show that the formula for computing the volume of 
a tetrahedron expressed in terms of the coordinates of its 
vertices is reduced to the form

Xi IJi z, 1
y==_l_ *2 1/2 Z2 1

6 x3 y3 z3 1
*4 Vk Z4 1

8. For four points A t {xt, yu zt) to lie in one plane it
is necessary and sufficient that

xi tti zt 1'
*2 U2 ZZ 1 
x % IJz Z3 1 

*4 Vk Z4 1
Prove this.

Sec. 5-3. Equations of a Surface 
and a Curve in Space

Suppose we have a surface (Fig. 69).
The equation

/ (x, y, z) =  0 (*)
is called the equation of a surface in implicit form if the 
coordinates of any point of the surface satisfy this equa-
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tion. And conversely, any three numbers x , y, z satisfying 
the equation (*) represent the coordinates of one of the 
points of the surface.

The system of equations
x =  /j (u, v), y =  /a (w, y), z =  /3 (w, (>), (**)

specifying the coordinates of the points of the surface as 
a function of two parameters (u, i?) is called the parametric 
equation of a surface.

Eliminating the parameters u, v from the system (**)„ 
we can obtain the implicit equation of a surface.

Form the equation of an arbitrary sphere in the rectangular 
Cartesian coordinates xyz.

Let (#0, yo, z0) be the centre of the sphere, and R its 
radius. Each point (#, y, z) of the sphere is located at a 
distance R  from the centre, and, consequently, satisfies the 
equation

{x — x0)2 +  (y — J/o)2 +  (z — z0)2 — — o (***)
Conversely, any point (x , y, z) satisfying the equation 
(***) is found at a distance R from (x0, z/0, z0) and, 
consequently, belongs to the sphere. According to the 
definition, the equation (***) is the equation of a sphere.

jp

Fig. 69. Fig. 70.
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Form, the equation of a circular cylinder with the axis Oz 
and radius R (Fig. 70).

Let us take the coordinate z (v) and the angle {u) formed 
by the plane passing through the z-axis and the point 
(x, y, z) with the #z-plane as the parameters u , i>, charac­
terizing the position of the point {x, y, z) on the cylinder. 
We then get

x = R  cos u, y =  R sin u, z = v,
which is the required equation of the cylinder in parametric 
form.

Squaring the first two equations and adding termwise, 
we get the equation of the cylinder in implicit form:

*2 +  y2= R29

Suppose we have a curve in space. The system of equa­
tions

A («, y, z) =  0, / a (x, y, z) =  0
is called the equation of a curve in implicit form if the coor­
dinates of each point of the curve satisfy both equations. 
And conversely, any three numbers satisfying both equa­
tions represent the coordinates of some point on the curve. 

A system of equations
*  =  <Pi (t), y =  q>2 (t), z =  q>3 (t),

specifying the coordinates of points of the curve as a func­
tion of some parameter (t) is termed the equation of a curve 
in parametric form.

Two surfaces intersect, as a rule, along a curve. Obvious­
ly, if the surfaces are specified by the equations fx(x, y , z) = 
= 0 and f 2 (x, y , z) = 0, then the curve along which 
they intersect is represented by a system of equations

fi (*, V, z) =  0, / 2 (x, y, z) =  0.
Form the equation of an arbitrary circle in space. Any 

circle can be represented as an intersection of two spheres. 
Consequently, any circle can be specified by a system of 
equations

(* — «i)2 +  (y — fri)2+ (z  — c,)2 — =  1
( x - a 2)2 + (y -b zr  + ( z - c z) 2 - m  = 0. J

8—0406
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As a rule, a curve and a surface intersect at separate 
points. If the surface is specified by the equation / (x, y> 
z) =  0, and the curve by the equations (x, y , z) =  0 
and /2 (x, y, z) =  0, then the points of intersection of 
the curve and the surface satisfy the following system 
of equations:

/  (a?, y, z) =  0, /j (x, y, z) =  0, / a (x, y, z) =  0.
Solving this system, we find the coordinates of the 

points of intersection.

1. Show that the surface represented by the equation
x2 +  y2 +  *2+  %ax +  2 by +  2cz +  d =  0,

is a sphere if a2 +  b2 +  c2 — d >  0. Find the coordi­
nates of its centre and radius.

2, A circle is specified by the intersection of two spheres
/i (#» lh z) = x2 A~y2 A~z2Jt  2a1x~j~ 2bty +  2c12 +  di = 0, j  
f2(x, y, z) = x2 + y2 + z2 + 2a2x + 2b2y + 2c2z + d2 = 0. J

Show that any sphere passing through this circle can 
be represented by the equation

3. Show that the surface specified by an equation of the 
form <p (x, y) =  0 is cylindrical. It is generated by straight 
lines parallel to the z-axis.

4. Form the equation of a right circular cone with the 
axis Oz, vertex O, and the vertex angle equal to 2a.

5. Form the equation of a surface described by the mid­
point of a line segment whose end-points belong to the 
curves and y2

6. Form the equation of a surface generated by a 
straight line which intersects the curves yk and y2y re-

EXERfJSES

M i  (*» z) +  M s  (« . y> «) =  o .

}
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maining all the time parallel to the yz-plane:

7i: * = /(* ) . |
y = a, I Vz-

z=cp(x), 
y = b

7. Show that the curve
z =  (p (s), y =  0 (a: > 0 ) ,

when revolving about the z-axis, generates a surface 
specified by the equation

z = <p(Vx2+ y z).

8. Show that a cylindrical surface, with the generatrix 
parallel to the z-axis, pas­
sing through the curve

z =  f(x), z =  (p (y),
is specified by the equation

f  (x) — <P (y) =  0.

Sec* 5-4. Transformation of 
Coordinates

Let there be introduced in 
space two Cartesian systems 
of coordinates xyz and x'y'z'
(Fig. 71). Express the coordi­
nates of an arbitrary point 
A in the coordinate system xry'zr in terms of its coordi­
nates in the coordinate system xyz.

We have

0  A. — x ex* -f- y ety* -(-* z ez*,

O'O =  x'0ex> +  y'0ey> -|- z[eZ' ,

OA=*zex +  yey + zez,

O'A =  O'O +  OA =  (x'0ex> + y ^  + z ^ )  i-(xex+ yey+ze2). 
8*
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The vectors ex, ey, e z allow a unique representation 
in terms of the vectors ey, ey, e z* :

where a iS are the coordinates of the vectors ex, ey, e z 
relative to the basis ex>, ey', e2t.

Substituting these expressions into the formula for

O'A, we get

O'A =  (x'0 +  aux +  a 21y +  a 31z) ex +

+  (y'o +  <*12^ +  0C2 2y +  « 32Z) ey +

~\~ (zq ~f" H” a 23?/ “t" a 33z) e zT’>

where the expressions in parentheses are the coordinates of
the vector O' A relative to the basis ex ey*, e zr, i.e. 
the coordinates of the point A in the system x'y'z', We 
get the required formulas:

The coefficients of these formulas have the following 
meaning: an , a 12, <Xi3 are the coordinates of the vector 
ex relative to the basis ex^ ey', e z*\ a2i> a 22> a 23 ^ e  
coordinates of the vector ey; a 31, a 32, a 33 the coordi­
nates of the vector e z; x'Q, y'QJ z'Q the coordinates of the 
point 0  in the coordinate system x'y'z'.

We note that the determinant

(*)

(**)

a li a 2l a 31
A =  a 12 a22 a32 =^0

a «3 a 23 a 33
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Indeed, one can directly check that

(exeyez) =
a i l  a i2 a 13

a21 a22 a23 (eX'eyeZ').
a 31 a 32 a 33

Since (exeye z) =£ 0, then A =̂= 0.
For all systems of coordinates x'y'z' which can be con­

tinuously transformed into one another the determinant A 
has one and the same sign. (The continuity of changing 
a system of coordinates is understood as the continuity of 
changing the origin of coordinates O' and the basis ex>, ey>, 
e Z'.) Indeed, since (exeye z) is non-zero, A is also non­
zero. Besides, since A changes continuously, it cannot 
attain values of different signs.

If A =7̂= 0, then the system of formulas (**) may always 
be interpreted as a passage from a coordinate system 
x'y'z' to the coordinate system xyz whose origin is situat­
ed at point (x'0, y'0, 2') and the basis vectors are expressed 
in terms of the basis vectors of the system x'y'z 
by the formula (*).

If both systems of coordinates xyz and x'y'z' are rectan­
gular, then the coefficients of the formulas (**) satisfy 
the orthogonality conditions

all “f" a i2 +  a i3 =  1 > a lia21 +  a 12a22 +  a l3a 23 “  0, 1
a21 “1“ a 22 a23 =  1 » a 21a31 "T a22a32 +  a23a 33 =  0, I (***)
a 31 + a 32 + a 33 =  1 » a 3 1 a l l  + a 32a 12 + « '3 3 CX13 =  0 ,  J
which are obtained if use is made of the formulas (*) 
and the following relationships

Sx =  @y == @z == f 5̂
e\» =  e\* =  e\* =  1, e&ev> = ey*e2* =  ez*ex» =  0.

Conversely, if the conditions (***) are fulfilled, then 
the formulas (**) can always be interpreted as a passage 
from a rectangular coordinate system x'y'z' to the system 
of rectangular coordinates xyz whose origin is located at 
point (#0, y'0, z0) and the basis vectors are specified by 
the formula (*). By virtue of the conditions (***) the
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basis vectors ex, ey, are unit vectors which are per­
pendicular pairwise.

In the case of rectangular Cartesian coordinates xyz 
and x'y'z' we have A =  ± 1 , where A =  4 1  if one system 
of coordinates can be brought in coincidence with the 
other system by motion. If it cannot be done by motion 
without mirror reflection, then A =  —1.

EXERCISES

1. What will be the formulas for transforming the coor­
dinates if the cry-plane coincides with the cr'y'-plane?

2. It is known that in a certain system of coordinates 
the equation

axxx2 4  a22y2 4  a33z2 4* 2aX2xy + 2a23yz +  2a31zx =  c
specifies a sphere. Find the angles between the coordi­
nate axes.

3. Suppose we have two systems of coordinates xyz 
and x'y'z' with a common origin 0. Let ex, e2, e3 be the 
basis of the first system, and ex x e2, e2 X e3, e3 X ex 
the basis of the second system. Derive the transformation 
formulas from one system to the other.

4. The transition from one rectangular Cartesian system 
of coordinates xyz to the other rectangular Cartesian 
system of coordinates x'y'z with the same origin can be 
accomplished in three stages:

x i = x cos cp— y sin cp,
I =  # sin (p-f ycoscp,

2i =  z; 
x2 = xu
y2 == yx cos 0 — zi sin 0, 
z2 = yisin 0 4 2i cos0; 
x* = x2 cos \|) — y2 sin i];, 
y' =  x2 sin 4#2 cos 4  
z’ =  z2.

The angles cp, 0, 9 are called Euler's angles. Find out 
their geometrical meaning.

II

III



Chapter 6 
A Plane and a Straight Line

Sec. 6-1. The Equation of a Plane
Form the equation of an arbitrary plane in the rectangular 

Cartesian coordinates xyz.
Let A 0 (x0, y0, z0) be a point in a plane and n a non­

zero vector perpendicular to the plane. Then whatever
the point of the plane A (x, y, z) is, the vectors A qA 
and n are mutually perpen­
dicular (Fig. 72). Hence,

A 0A *n =  0. (*)
Let a, 6, c be the coordi­

nates of the vector n with 
respect to the basis ex, ev, e 2.

Then, since A 0A =  OA —
—OA0, it follows from (*) 
a (x — x0) +  b (y — y0) +

-\-c (z — z0) =  0. (**) Fig. 72.
This is the required equation.

Thus, the equation of any plane is linear relative to the 
coordinates x , i/, z.

Since the formulas for transition from one Cartesian 
system of coordinates to another are linear, we may 
state that the equation of a plane is linear in any Cartesian 
system of coordinates (but not only in a rectangular one).

Let us now show that any equation of the form 
ax +  by +  cz +  d — 0 

is the equation of a plane,
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Let x0, yo, z0 be a solution of the given equation. Then 
axQ -f by0 +  cz0 +  d = 0 

and the equation may be rewritten in the form
a (x — x0) +  b (y — y0) + c (z — z0) =  0. (***)

Let n be a vector with the coordinates a, 6, c with 
respect to the basis ex, ey, e zy A 0 a point with the 
coordinates x 0, y0, z0, and A a point with the coordi­
nates x, y, z. Then the equation (***) can be written 
in the equivalent form

A qA -u  =  0.
Whence it follows that all points of the plane passing 

through the point A 0 and perpendicular to the vector n 
(and only they) satisfy the given equation and, conse­
quently, it is the equation of this plane.

Let us note that the coefficients of x, y , z in the equa­
tion of the plane are the coordinates of the vector per­
pendicular to the plane relative to the basis ex1 ejn e z.

EXERCISES

1. Form the equation of a plane given two points
(xx, yi, zx) and (x2, y2, z2) situated symmetrically
about it.

2. Show that the planes
ax +  by +  cz -f dx =  0,
ax +  by +  cz +  d2 =  0, d± =£=■ d2l

are parallel (do not intersect).
3. What is the locus of points whose coordinates satisfy 

the equation
(ax +  by +  cz +  d)2 — (ax +  $y +  yz +  6)2 =  0?

4. Show that the curve represented by the equations
/ (x, y, z) + axx +  bty +  cxz +  d1 =  0,
f  (x, y, z) + a?? +  b%y +  c?z +  d2 =  0,
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is a plane one, i.e. all points of this curve belong to a 
plane.

5. Show that the three planes specified by the equations
ax -f- by cz -f- d =  0, 

ax -f py +  yz +  6 =  0, 
k (ax +  by +  cz) +  p, (ax +  $y + yz) k = 0,

have no points in common if h ^  Xd +  p.8.
6. Write the equation of the plane passing through the 

circle of intersection of the two spheres
x2, +  y2 +  z2 +  ax +  by +  cz +  d =  0, 

x2 +  y2 +  z2 + ax +  Py +  yz +  8 =  0.
7. Show that inversion transforms a sphere either into 

a sphere or into a plane.
8. Show that the equation of any plane passing through 

the line of intersection of the planes
ax +  by +  cz +  d — 0,
ax +  Py +  yz +  8 =  0,

can be represented in the form
% (ax + by +  cz -f d) +  |li (ax +  py +  yz +  8) =  0.
9. Show that the plane passing through the three given 

points (xij yi? zt) (i =  1, 2, 3) is specified by the equa­
tion

x y z 1

Xi yi Zi 1 = 0
#2 J/2 Z2 1
x3 y3 z3 1

Sec. 6-2. Special Cases of the Position 
of a Plane Relative to a Coordinate System

Let us find out the peculiarities of the position of a plane 
relative to a coordinate system which take place when its 
equation is of this or that particular form.

1. a =  0, 6 =  0. Vectors (perpendicular to the plane) 
is parallel to the z-axis. The plane is parallel to the
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xy-plane. In particular, it coincides with the £z/-plane 
if d is also zero.

2. b =  0, c =  0. The plane is parallel to the yz~plane 
and coincides with it if d =  0.

3. c =  0, a = 0. The plane is parallel to the £2-plane 
and coincides with it if d =  0.

4. a =  0, 6 ^ 0 ,  c =7̂= 0. Vector n is perpendicular to 
the #-axis: exn =  0. The plane is parallel to the rr-axis, 
in particular, it passes through it if d =  0.

5. a =̂= 0, b =  0, c #  0. The plane is parallel to the 
i/-axis and passes through it if d = 0.

6. a-7^0, b =̂= 0, c =  0. The plane is parallel to the 
z-axis and passes through it if d =  0.

7. d =  0. The plane passes through the origin (whose 
coordinates 0, 0, 0 satisfy the equation of the plane).

If all the coefficients are non-zero, then the equation 
may be divided by —d. Then, putting

we get the equation of the plane in the following form:

The numbers a, p, y are equal (up to a sign) to the 
segments intercepted by the plane on the coordinate axes. 
Indeed, the #-axis (y =  0, 2 =  0) is intersected by the 
plane at point (a, 0, 0), the y-axis at point (0, p, 0), 
and the 2-axis at point (0, 0, y). The equation (*) is called 
the intercept form of the equation of a plane.

We conclude with a note that any plane not perpen­
dicular to the zp-plane (c # 0 ) may be specified by an 
equation of the form

1. Find the conditions under which the plane

(*)

2 =  px +  qy +  I

EXERCISES

ax +  by +  cz +  d =  0 
intersects the positive semi-axis x (y, z).



Ch. 6. Plane and Straight Line 123

2. Find the volume of the tetrahedron bounded by the 
coordinate planes and the plane

ax +  by +  cz +  d =  0
if abed =+ 0.

3. Prove that the points in space for which

1*1 +  \V I +  \ z \ < a ,
are situated inside an octahedron with centre at the origin 
and the vertices on the coordinate axes.

4. Given a plane a by the equation in rectangular 
Cartesian coordinates

ax +  by +  cz +  d =  0.
Form the equation of the plane o' symmetrical to 

o about the xy~plane (about the origin 0),
5. Given a family of planes depending on a parameter

ax +  by +  cz +  d +  % (ax +  $y +  yz +  8) =  0.
Find in this family a plane parallel to the 2-axis.

6. In the family of planes
(a±x +  bty +  Cjz +  d j  +  A, (a2x +  b2y +  c2z +  d2) +

+  |ii (a3x +  bsy + czz +  d3) =  0

find the plane parallel to the ^-plane. The parameters of 
the family are % and [x.

Sec. 6-3. The Normal Form of the Equation 
of a Plane

If a point A (,x, y, z) belongs to the plane
ax +  by +  cz +  d =  0, (*)

then its coordinates satisfy the equation (*).
Let us find out what geometrical meaning has the expres­

sion
ax +  by +  cz +  d 

if the point A does not belong to the plane.
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We drop from the point A a perpendicular onto the 
plane. Let A 0 (x0, y0, z0) be the foot of the perpen­
dicular. Since the point A 0 lies on the plane, then

ax0 +  by o +  cz0 +  d =  0.
Whence
ax -|- by -f- cz d ~

= a (x — x0) +  b (y — y0) +  c (z — z0) =

=  n •A qA =  zb | n | 6,
where n is a vector perpendicular to the plane, with 
the coordinates a, b, c, and 6 is the distance of the point A 
from the plane.

Thus
ax +  by +  cz +  d

is positive on one side of the plane, and negative on the other, 
its absolute value being proportional to the distance of the 
point A from the plane. The proportionality factor

±  ] n  | =  ±  V +  &2 +  c2-
If in the equation, of the plane

a2 +  b2 +  c2 =  1,
then

ax +  by +  cz +  d
will be equal up to a sign to the distance of the point 
from the plane. In this case the plane is said to be specified 
by an equation in the normal form.

Obviously, to obtain the normal form of the equation 
of a plane (*), it is sufficient to divide it by

±  ] /a 2 +  b2 -f c2.

EXERCISES

1. The planes specified by the equations in rectangular 
Cartesian coord in a tes

ax +  by +  cz +  d — 0,
ax -f- by -J- cz d = 0 ,
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where d \  have no points in common, hence, they 
are parallel. Find the distance between these planes.

2. The plane
ax +  by +  d =  0

is parallel to z-axis. Find the distance of the 2-axis from 
this plane.

3. What is the locus of points whose distance to two 
given planes are in a given ratio?

4. Form the equations of the planes parallel to the plane

and located at a distance 6 from it.
5. Show that the points in space satisfying the condi­

tion
| ax +  by +  cz +  d | <  S2, 

are situated between the parallel planes 
ax +  by +  cz +  d ±  62 =  0.

6. Given are the equations of the planes containing 
the faces of a tetrahedron and a point M  by its coordi­
nates. How to find out whether or not the point M  lies 
inside the tetrahedron?

7. Derive the formulas for transition to a new system 
of rectangular Cartesian coordinates x'y'z if the new 
coordinate planes are specified in the old system by the 
equations

axx +  bxy +  cxz +  dt =  0, 
a2x -f- b2y -f- c2z -f* d2 =  0, 
asx + b3y +  c3z +  d3 =  0.

See. 6-4. Relative Position of Planes 
Suppose we have two planes

Find out under which condition these planes are: (a) 
parallel, (b) mutually perpendicular.

ax + by + cz + d = 0

aiX + biy + ctZ + d i^O j 
a2x -f b2y +  c2z + d2 = 0. }
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Since %, bx, cx are the coordinates of vector n5 perpen­
dicular to the first plane, and a2, b2, c2 are the coordinates 
of vector n2 which is perpendicular to the second plane, 
the planes are parallel if the vectors n 2 are parallel,
i.e. if their coordinates are proportional:

_ bX   Ci
a2 2̂ c2

Moreover, this condition is sufficient for parallelism of 
the planes if they are not coincident.

For the planes (*) to be mutually perpendicular it is 
necessary and sufficient that the mentioned vectors nx and 
n% are mutually perpendicular, which for non-zero 
vectors is equivalent to the condition

»j»2 =  0 or axa2 +  bx fe2 +  cxc2 =  0.

Let the equations (*) specify two arbitrary planes. 
Find the angle made by these planes.

The angle 0 between the vectors nx and »2 is equal to 
one of the angles formed by the planes and is readily 
found. We have

nx • »2=  | t*i | | I cos 0.
Whence

g OiBt + bJ>t + exCt -----
Y  4 + b*+ ciy  4+bi-i-4

Suppose we have three different planes:
aiX + biy +  Ciz + d i^O , ]
a2x -(- b2y +  e2z +  d2 = 0, > (**)

H-* bzy + c$z -f- d$ =  0. J
The planes (**) either intersect at one point, or are 

parallel to a straight line, in particular, they pass through 
a straight line.

If the planes (**) intersect at one point, then the system 
of equations (**) has a unique solution. As is known from 
algebra, it will be when and only when the determinant
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of the system
ai bi Cl
a% b2 CZ
&Z h Cz

It can be explained using another method. If the planes 
intersect at one point, then the vectors (ax, &1? cx), 
n2 (a2» 2̂)* w3 (%> £3) cannot be parallel to one
plane (since the planes, intersecting at a point, would 
then intersect along a straight line), and, consequently, 
their triple product equal to the determinant A is non- 
zero.

The planes (**) will be parallel to a straight line if 
A =  0 which means that the vectors nv n2l ns are paral­
lel to some plane. If in addition the system (**) is com­
patible (i.e. has a solution) then the planes intersect along 
a straight line.

EXERCISES

1. Find the angles formed by the plane
ax +  by -f- cz +  d =  0

and the coordinate axes.
2. Find the angle formed by the plane

z =  px +  qy +  I
with the xy-plane.

3. Show that the area of a figure F contained in the 
plane

z ~  px +  qy H- /

and the area of its projection F onto the £z/-plane are 
related as follows

S{F) = V l + P + ? S { F ) .
4. Under what condition does the plane

ax +  by +  cz +  d — 0
intersect the x- and y-axes at equal angles? Under what 
condition does it intersect all three axes?
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5. Show that the plane passing through the point 
(#(b yo? zo) an<i parallel to the plane

ax +  by +  cz +  d =  0,
is represented by the equation

a (x — x0) + b {y — y0) + c (z — z0) =  0.

6. Show that the plane passing through the point 
y0, z0) and perpendicular to the planes

axx +  bxy +  cxz + dj = 0, 
a2x + b2y +  c2z +  d2 = 0,

is specified by the equation

z —«̂o y — yo z—2o
ax bi Ci
a 2 b 2 C2

=  0.

7. Among planes of the pencil 
A (axx + bxy +  cxz +  dx) +  p, (a2x +  b2y +  c2z +  d2)r=

=  0
find the plane perpendicular to the plane

ax +  by +  cz +  d =  0.
8. Let

axx + bxy +  cxz +  dx =  0, 
a2x +  b 2 y +  C2Z +  =  0 ,

a3x +  b3y + csz +  ds = 0

be the equations of three planes not parallel to a straight 
line. Then any plane passing through the point of 
intersection of the given planes has the equation of the 
form:
Ai {a^x -|- bxy +  4“ dx) 4-

4" 2̂ (a2X 4" b2y 4“ C2Z 4- ̂ 2) 4-
As (ci3x  +  b3y  4- czz 4~ ^3 )=
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Sec. 6-5* Equations of the Straight Line
Any straight line can be specified as an intersection 

of two planes. Consequently, any straight line can be 
specified by the equations
a ix  -f- bYy  +  c t z -f- d i  — 0, j 
Hx +  b2y +  c2z +  d2 =  0, J
the first of which represents 
one plane and the second the 
other. Conversely, am/ compat­
ible system. of two such inde­
pendent equations represents 
the equations of a straight line.

Let A o (x0, y 0, zQ) be a fixed 
point on a straight line, 
A (xy y', z) an arbitrary point 
of the straight line, and 
e (ft, I, m) a non-zero vector parallel to the straight line
(Fig. 73). Then the vectors A qA and e are parallel and, 
consequently, their coordinates are proportional, i.e.

This form of the equation of a straight line is called 
canonical. It represents a particular case of (*), since it 
allows an equivalent form

x *o _ y y — _ z — Zq
k I ’ I m ’

corresponding to (*).
Suppose a straight line is represented by the equations 

(*). Let us form its equation in canonical form. For this 
purpose it is sufficient to find a point A 0 on the straight 
line and a vector e parallel to this line.

Any vector e (k , Z, m) parallel to the straight line 
will be parallel to either of the planes (*), and conversely. 
Consequently, ft, Z, m satisfy the equations

â ft -j- ZqZ -j- ĉ trt =  0, 1
a2ft +  62Z-j-c2m =  0. J v '

9 - 0 4 0 6
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Thus, any solution of the system (*) may be taken 
as x0, y0, z0 for the canonical equation of the straight 
line and any solution of (***) as the coefficients k , Z, my 
for instance

et
1 = Ci ai

C'2 d<2,
m = at &i

a2 2̂
From the equation of a straight line in canonical form 

we can derive its equations in parametric form. Namely, 
putting the common value of the three ratios of the ca­
nonical equation equal to Z, we get

x =  kt +  x0, y =  It +  y0, z =  mZ +  z0
which are the parametric equations of a straight line.

Let us find out what are the peculiarities of the position 
of a straight line relative to the coordinate system if some 
of the coefficients of the canonical equation are equal to zero.

Since the vector e (&, Z, m) is parallel to the straight 
line, with m =? 0 the line is parallel to the ary-plane 
(eez =  0), with 1 = 0 the line is parallel to the arz-plane, 
and with k =  0 it is parallel to the yz-plane.

If k =  0 and I = 0, then the straight line is parallel 
to the 2-axis {e is parallel to e z); if 1 = 0 and m =  0, 
then it is parallel to the ar-axis, and if k = 0 and m =  0, 
then the line is parallel to the y-axis.

We conclude with a note that a straight line may be 
specified by the equations of the form (*) and (**) in 
Cartesian coordinates in general (and not only in its 
particular case, i.e. in rectangular Cartesian coordinates).

EXERCISES

1. Under what condition does a straight line repre­
sented by the equation in canonical form (**) intersect 
the x-axis (y-axis, 2-axis)? Under what condition is it 
parallel to the plane xy (y2, zx)l

2. Show that the locus of points equidistant from three 
pairwise non-parallel planes is a straight line.

3. Show that the locus of points equidistant from the 
vertices of a triangle is a straight line. Form its equations 
given the coordinates of the vertices of the triangle.
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4. Show that through each point of the surface
z =  axy

there pass two straight lines entirely lying on the surface.
5. If the straight lines specified by the equations

a^x +  bm + ciz +  d ^  0, 1
a2X+ b2iJ + C2Z +  d2 = Q J

and
a^x + bzy + czz +  dz = 0, 1 
akx~\-bky-\-clkz-\-dk = 0, }

intersect, then
at bi Ci di
2̂ 2̂ C2 d2

a3 h c3 d2
a4 h C4 d4

Show this.

Sec. 6-6. Relative Position of a Straight Line 
and a Plane, of Two Straight Lines.

Suppose we have a straight line and a plane respectively 
specified by the equations

ax +  by +  cz +  d =  0,
x xo _ y i/o_ z zo

k I m

Since the vector (a, 6, c) is perpendicular to the plane, 
and the vector (ft, Z, m) is parallel to the straight line, 
then the straight line and the plane will be parallel if these 
vectors are mutually perpendicular, Le. if

ak +  bl +  cm =  0. (*)
Moreover, if the point (x0, y0, z0) belonging to the 

straight line satisfies the equation of the plane
ax0 +  by0 +  czQ +  d =  0, 

then the straight line lies in the plane.
9*
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The straight line and the plane are mutually perpendicular 
if the vectors (a, fc, c) and (&, Z, m,) are parallel, i.e. if

a _ b _ c
k I 771 (**)

We can obtain the parallelism and perpendicularity 
conditions for a straight line and a plane if the straight 
line is represented by the intersection of the planes

aYx +  bxy +  cxz +  d1 =  0,
a2x +  b2y +  c2z +  d2 =  0.

It is sufficient to note that the vector with the coor­
dinates

^  c{ , z  =
C i  ax ai &i, m =

h% cz c2 a2 b2
is parallel to the straight line and make use of the condi­
tions (*) and (**).

Suppose two straight lines are specified by the equations 
in canonical form

x—x _  y — y' _  Z — zr %
k' V “  m' ’ I

x—x "_ y—y'1 _  z —z" | ̂ ***̂
k" V ~  m" ’ J

Since the vector (k \ l \  m') is parallel to the first 
line, and the vector (&", I", m ”) is parallel to the second 
line, then the lines are parallel if 

k’ _  V _  m*
k" ~~ l" “  m" *

In particular, the straight lines coincide if a point of 
the first line, say {x', y', z ) ,  satisfies the equation of 
the second line, Le. if

x x y y z z 
kn I* in"

The straight lines are mutually perpendicular if the vec­
tors (k', I', m’) and (k ", I", m ") are mutually perpen­
dicular, i.e. if

k'k" +  Z'Z" +  rn’m" =  0.
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If two straight lines are specified by equations of one 
of the considered forms, then it is not difficult to find the 
angle between them. In this case it is sufficient to find the 
angle between the vectors which are parallel to the straight 
lines. For instance, if the straight lines are represented 
by equations in canonical form (***), then for one of 
the two angles 0 formed by the lines we obtain

cos 0 =  . -  ' — .|/V 2+ J/2+m'2 y V 2+ r 2 +  m"2

EXERCISES

1. Show that if for the straight lines specified by the 
equations (***),

x’ — x" y' — y” z' — z‘ 
k' V m' =  0,
¥  r

then the lines are either parallel, or intersect.
2. Find the distance between two skew lines represent­

ed- by equations in canonical form.
3. Find the parallelism (perpendicularity) condition 

for the straight line
a{x +  b$ c^z -f- — 0,1
a2x +  b2y-\-c2z +  d2 = 0,\

and the plane
ax +  by +  cz +  d — 0.

4. Find the parallelism (perpendicularity) condition 
for the straight lines

~\~ b\y c^z -f- rfi =  0, 1
a2x b2y -|- c2z --f- d2 =  0 J

and
asx b3y -|- c3z + d3 = 0, 1
a^x ~b b̂ y -\- ĉ z -f- =  0. j
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5. Find the equation of a conical surface with the ver- 
tice (x0, y0, z0), whose generatrices intersect the plane

ax -|- by -j- cz —1~ d =  0
at an angle a.

6. Write the equation of the straight line passing 
through the point (.x0, z/0, z0) and parallel to the planes

aYx +  bxy +  =  0,
a2x +  b2y +  c2z + d2 =  0.

7. Form the equation of a conical surface with the 
vertex at point (0, 0, 2R) if it passes through a circle 
specified by the intersection of the sphere

x2 + y* + z2 =  2 Rz

with the plane
ax +  by +  cz +  d = 0.

Find out what is the intersection of this conical sur­
face and the #y-plane.

8. Stereographic projection of a sphere on a plane is 
defined as the projection from an arbitrary point of this 
sphere on the tangent plane at the diametrically opposite 
point. Show that in stereographic projecting to the circles 
on the sphere there correspond circles and straight lines 
on the plane of projection.

Sec. 6-7. Basic Problems on the Straight Line 
and the Plane

Form the equation of an arbitrary plane passing through 
the point (x0, yQ, z0).

Any plane is specified by an equation of the form
ax -f- by -f- cz -(“ d =  0»

Since the point (z0, y0, z0) belongs to the plane, then
ax* by q -|- czq "-J- d =  0#

Hence the equation of the required plane is
ftx + by + cz — (ax9 +  by0 + czQ) =  0?
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or
a (x — x0) +  b (y — y0) +  c (z — z0) =  0.

Obviously, for any a, &, c this equation is satisfied by the 
point (x0, y0, z0).

Form the equation of an arbitrary straight line passing 
through the point (x0, y0, z0).

The required equation is
x — sp _  y —yp __

/c z to •
Indeed, this equation specifies a straight line passing 

through the point (x0, y0, z0) whose coordinates obviously 
satisfy the equation. Taking arbitrary (not all equal to 
zero) values for &, I, m , we obtain a straight line of an 
arbitrary direction.

Form the equation of a straight line passing through two 
given points (#', y ', z') and (x", y ", z ").

The equation of the straight line may be written in the 
form

x —x   y ~ y '    z —z’
k Z m

Since the second point lies on the line, then
x" — x '__ i f  — y ' __zn — z'

k I TO
This allows us to eliminate A;, Z, m, and we get the equa­
tion

x —x' __ y —yf z — z1 
x —x' ~  f —y ~~ z"— s' *

Form the equation of a plane passing through three points 
A '{x ', y', z ) , A "(x" , y", z ”), A"1 (xm, y \ \  zm), not 
lying on a straight line.

Let A (x, y, z) be an arbitrary point belonging to the 
required plane. The three vectors

AfA, A ’A ', A 7!'"
lie in one plane. Consequently,

(A’A , A 'A", A 'A ”) =  0,
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and we get the required equation
X  — X y - y z  —  z f

x" —  x f y”—y' z ” — z '
x w —  x ' y w- y ’

Form the equation of a plane passing through a given 
point (#0, z/0, z0) and parallel to the plane

ax -\- by cz d — 0.

The required equation is
a (x — x0) +  b (y — y0) +  c (z — z0) =  0.

Indeed, this plane passes through the given point and is 
parallel to the given plane.

Form the equation of a straight line passing through a given 
point (x0y y0, z0) parallel to a given straight line

x — x'   y  —  y'    z —  z'

k I m

The required equation is
x — x0 _  y —j/p _ _  z—z0 

k I m

A straight line passing through a point (x0, y0J z0) and 
perpendicular to a plane

ax by cz d = 0,
is specified by the equation

X — Xq _  y  —  y 0 _ _  Z —  Z0
a I c

A plane perpendicular to a straight line
x —  x'   y  —  y'   z— z'

k I m ’

passing through a point (#0, yQl zQ), is specified by the 
equation

k {x — xp) +  l(y  — y0) + m (z — z0) = 0r
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Let us form the equation of a plane passing through a point 
{x0, y0, z0) and parallel to the straight lines

x —x'   y — y '   z — zr
“  V “ " in' ’

x — x" _ y — y" _  z — zn
k" ~  F “  m” •

Since the vectors (&', V, mr) and ( k \  I”, m") are 
parallel to the plane, their vector product is perpendic­
ular to the plane. Hence the required equation is

(x — x0)
V m 
I” m" +  (y—y<>)

m! k' 
m" k" +  (z z0)

k' V 
k" I" =  0,

which can be rewritten in a compact form:

y yo z zo 
¥  V m f =  0 .
¥  I"

EXERCISES

1. Form the equation of a plane equidistant from two 
skew lines represented by equations in canonical form.

2. Show that any plane passing through the straight 
line

aix +  biV 4“ ciz 4" di =  0, |  
a2x +  b2y -f- c2z -f- d2 — 0, J

is specified by an equation of the form 
% fax  + btf +  cxz +  dx) +  |x (a2x +  b2y + c2z +  d2) =

=  0.

3, Show that the plane passing through the straight 
line

y — y' z—z'X  —  X
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and the point y 0, z 0), not lying on the line is spec­
ified by the equation

4. Show that any straight line intersecting the given

a ^ x  -f- b3y  -f- c 3z  d 3 —  0 ,  |

(î x - J -  b̂ y - f -  ĉ z - j -  =  0 ,  j

is represented by the equations
M ^ x  +  b ^y  +  c xz  +  d j  +  p, ( a 2x  +  b 2y  +  c ^ z  +  d 2) =  0 ,  

X  (a3x  +  b 3y  +  c 3z  +  d 3) +  p '  ( a ^x  +  fc4z/ +  c ^ z  -I- d 4) =  0 .

5. Show that the conical surface generated by straight 
lines passing through the origin and intersecting the 
curve cp (x, y) =  0, z =  1 is specified by the equation

x  Xq y  z/q z Zq
x '  —  x 0 y ' —  y o  z '  — Zf, = 0 .

k I m

lines:



Chapter 7

Surfaces of the Second Order 
(Quadric Surfaces)

Sec. 7-1. A Special System of Coordinates
The surface of the second order (or the quadric surface) is 

defined as a locus of points in space whose Cartesian coor­
dinates satisfy the equation of the form
an x2 +  a22y2 +  aQSz2 +  2 a12xy +  2 a23yz +  2a13xz +

+  2 a^x  +  2 a24y +  2 a34z +  a44 =  0. (*)
Obviously, this definition is invariant to the system of 

coordinates chosen. Indeed, the equation of the surface 
in any other system of coordinates x y 'z ' is obtained from 
the equation (*) by substituting x, y, and z by linear 
expressions with respect to x \  y , 2', and, consequently, 
in the coordinates x \  yf, zf will also have the form (*).

Any plane intersects a quadric surface along a curve 
of the second order. Indeed, since the determination of 
surface is invariant with reference to the coordinate 
system chosen, we may regard the plane xy (z =  0) as 
a secant plane. And this plane obviously intersects the 
surface along the second-order curve

an x2 +  2 a12xy +  a22i/2 +  2a14;z +  2 a84y +  a44 =  0.
In particular, a right circular cone with the 2-axis 

% 22 =  x2 +  y2
is a surface of the second order and, consequently, is 
intersected by any plane along a second-order curve. 
If the secant plane does not pass through the vertex, 
then a pair of straight lines is excluded and we have an 
ellipse, hyperbola or parabola.
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To study the geometrical properties of a quadric sur­
face it is only natural to refer it to such a coordinate 
system in which its equation will have the simplest form.

Now we are going to indicate a coordinate system in 
which the equation of our surface will become considerably 
simplified. Namely, the coefficients of yz, xz, and xy in 
the equation will be equal to zero.

Consider the function F (A) of - a point A (x , y, z) 
defined in the entire space, except for the origin, by the 
equality

F ( A \ _  All*2 +  a22y* +  awZ2 +  2fli2xy +  2a23yz +  2aisxz 
^  X*+y*+Z*

On the unit sphere (#2 +  y2 +  z2 =  1) it is bounded 
and, consequently, reaches the absolute minimum at some 
point A 0. And since it is constant along any ray emanating 
from the origin (F (kx, %y, kz) =  F (x, y, z)), then at 
A 0 the function F reaches the absolute minimum of val­
ues with reference to the whole space (and not only on 
the unit sphere).

Let us introduce new Cartesian coordinates x ', yf, z' 
with the origin 0  retained and taking the ray OAb for 
the positive semi-axis z. As is known, the relation be­
tween the coordinates #, y, z and#', z/', z’ is established 
by the formulas of the form

X — CL̂ X +  a 12Z/' 4'°&i3z', 'j 
y =  02!#' +  a22z/' +  a2Sz ' , I (**)
z =  a3ix' + a32y' +  a3 . J

The equation of the surface in the new coordinates 
#', z/', z is obtained from the equation (*) by replacing 
x, y, z by x ,  y’, z according to the formulas (**) and 
has the form
a\ix* +  a22y'2 +  a3zz'2 +  2 ai2x'y' +  2a23y'z' +  2 a'i3x'z' +  

4* 2a{4#' +  2a2±y' +  2a34z' 4~ #44 =  0. 
The function F in the new coordinates has the form
p / A\ — aiix'2 4 -022y'24 -033z'2 4- â'i2x y '4 -2a^yrz' +  2a{3x'z'

x f* + y ' 2+ * ' 2
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and is obtained by replacing x> y , z in the old expres­
sion for F by x', y \  z also according to the formulas (**). 
The form of the denominator remains unchanged, since 
it represents the square of the distance of the point A 
from the origin which is expressed in both systems in 
the same way.

According to the chosen system of coordinates x'y'z' 
the minimum of the function F is reached at x =  0, 
y' =  0, z' = l. Therefore,] if in the expression for F we 
put x = 0, z' =  1, then we get a function of single 
variable

 ̂f j \ _ g22y/2H~2flaaff' 4-033
J  \ y  )  —  y ' 2  »

which reaches the minimum at y' =  0. Consequently, 
df(y')

But
dy'

0 for y ' = 0.

df(y') I
dy' \V'=o ^a23‘

Thus, the coefficient of y'z' in the equation of the sur­
face is equal to zero. It is shown in a similar way that 
the coefficient of x z' is also equal to zero.

Hence, the equation of the surface in the coordinate 
system x'y'z' will be
a\xx’2 +  2ai2x 'y ' +  a2Zy '2 + 2ai4x' 4* 2a^y' +  2az4z' +

+  a44 =  0.
, z" accord-

f 2+  a33;
If now we introduce new coordinates x", y 

ing to the formulas
x' = x" cos 0 -f U* sin 0, 
y' = —x" sin 0 +  y" cos 0, 
z' = z",

then, the same as in the case of the second-order curves 
considered in Sec. 3-8, by appropriate choice of the angle 0 
we can achieve the coefficient of x"y" also equal to zero.

And so, there exists such a system of rectangular Cartesian 
coordinates in which the equation of the surface has the form
an x% +  a<i y2 +  a3 3Z2 + 2a1x +  2a2y +  2a3z +  a =  0. (*)
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Sec. 7-2. Quadric Surfaces Classified
As it was shown in the preceding section, by transition 

to an appropriate system of coordinates the equation 
of a quadric surface can be reduced to the form

(inX2 4" a22y2 a33z* 2 ^ #  +  2a2y +  2 a 3z + a — 0.(*)

We shall distinguish three basic cases:
A: all the coefficients of the squares of the coordinates 

in the equation (*) are non-zero;
B: two coefficients are non-zero, and the third one, 

for instance a33, is equal to zero;
C: one coefficient, say a33, is non-zero, and two others 

are equal to zero.
In Case A, by transition to a new coordinate system 

according to the formulas

x — x-\- ai y' = y + ^ > :Z +  -

which corresponds to the translation of the origin, we 
reduce the equation to the form

ax'2 +  py'2 +  yz'2 +  6 =  0.
Here we distinguish the following subcases:
Ax: 6 =  0. The surface is a cone either imaginary if 

a, p, y are of the same sign, or real if among the numbers 
a, p, y there are numbers having different signs.

A2: 6 =£ 0, a, p, y are of the same sign. The surface 
represents an ellipsoid either imaginary if a, p, y, 6 are 
of the same sign, or real if the sign of 6 is opposite to that 
of a, p, y.

A3: 6 += 0, of the four[coefficients a, p, y, 6 two coef­
ficients are of one sign, the remaining two having the 
opposite sign. The surface is a hyperboloid of one sheet.

A4: 6 += 0, one of the first "three coefficients has a sign 
opposite to that of the remaining coefficients. The sur­
face is a two-sheeted hyperboloid.

In Case B by transition to new coordinates according 
to the formulas

/ I a>i t ,
* = z + - J- ,  y = y  +

a l l

#2
a 22

z = z
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we reduce the equation of the surface to the form 
ax'2 +  P*/'2 +  2pzf +  q =  0.

Here we shall distinguish the following subcases:
Bt: p =  0, q =  0* The surface decomposes into a pair of 

planes

either imaginary if a  and p are of the same sign, or real 
if a and p have opposite signs.

B2: p =  0, q =4= 0. The surface represents a cylinder 
either imaginary if a, p, and q are of the same sign, or 
real if there are coefficients with different signs. In 
particular, if a and p are of the same sign, then we have 
an elliptic cylinder, and if a and p have different signs, 
then we have a hyperbolic cylinder.

B3: p #  0. Paraboloids. Passing over to new coordinates

x’ = x(, y" = y', z" =  z' +  4 ’

we reduce the equation of the surface to the form
ax"2 +  pz/"2 +  2pz" =  0.

The paraboloid is elliptic if a  and p are of the same sign, 
and hyperbolic if a  and P are of different signs.

In Case_C we pass over to new coordinates x , y'\ z :

x' = x, y ' = y ,  z' =  z + —2-.
a 33

Then the equation will take the form 
y z 2 +  px +  qy +  r =  0

and we may distinguish the following subcases:
Cx: p =  0, q — 0. The surface decomposes into a pair 

of parallel planes: imaginary if 7 and r are of the same 
sign, or real if 7 and r have opposite signs, or coincident 
if r =  0.

C2: at least one of the coefficients p or q is non-zero. 
Preserving the direction of the z-axis, we take the plane
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px +  qy +  r — 0 for the plane y'z.  Then the equation 
will take the form

y z 2 +  &x' =  0.
The surface is a parabolic cylinder.

EXERCISES

1. The curve in the :n/-plane
anx2 +  2an xy +  a22y2 +  2 axx +  2 a2y +  a =  0

represents an ellipse (hyperbola, parabola). What does 
the quadric surface represent

z =\axlx2 +  2 a12xy +  a22y2 +  2 axx +  2 a2y +  a?
2. Show that the quadric surface

X (axx +  bxy +  cxz +  d j2 +  |x (a 2x + b2y +  c2z +
+  d2)2 =  0

decomposes into a pair of planes.
3. To obtain the projection (on the #z/-plane) of the 

curve of intersection of the surface
an x2 +  a22y2 +  a33z2 +  2a12xy +  . . . +  a44 =  0 (*)
with the plane

z =  ax -f- by -f- cy
one has^to substitute z =  ax +  by +  c in the equa­
tion (*). Show this.

4. Show that;the sections of a quadric surface by 
parallel planes are homothetic.

5. Show that the conical surface generated by straight 
lines passing through a given point and intersecting a 
second-order curve is a quadric surface.

6. Let
/  (x, y, z) =  0, 9 (x, y, z) =  0

be equations of two quadric surfaces. Show that the equa­
tion of the quadric surface passing through the point 
(x0, y0, z0) and the intersection of two given surfaces 
will be
/ (X, y, z) cp (x0, I/o. Z0) — 9 (*> y> z) /  (̂ o* J/o* Zo) =
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7. Show  th a t  th e  s tra ig h t  lin e  specified b y  th e  eq u a tio n s  

(a±x +  b(ij +  c& -|- dt) +  K {atx +  p& +  ytz +  6 t ) =  0 ,  ̂

(a2x +  b2y +  c2z +  d2) +  (a2# +  ^y  H“ y%z +  62) =  0> J

lies  e n tire ly  on  th e  q u ad ric  surface

(axx +  bxy +  c±z +  dx) (a2x +  b2y +  c2z +  d 2) —

— {axx +  Pjy +  yxz +  61) (a2x +  p2y +  y2z +  62) =  0 .

8 . F in d  o u t w h a t is th e  su rface g en era ted  b y  s tra ig h t 
lin es  in te rse c tin g  th ree  g iven  s tra ig h t lin es  w h ich  are 
n o n -p a ra lle l and  do n o t in te rsec t.

9* F o rm  th e  e q u a tio n  of th e  su rface gen era ted  b y  th e  
s tra ig h t  lin e

— dx —b, 1
=  c y + d  J <“•*' c' * *

ro ta t in g  ab o u t th e  z-axis.

Sec. 7-3. The Ellipsoid
T h e eq u a tio n  of th e  e llip so id  is (Fig. 74)

cur2 +  Py2 +  yz* +  6 =  0.

D iv id in g  i t  b y  6 and  p u t t in g  6 / a  =  —a 2, 
6 /y  =  —c2,"we reduce i t  to  th e  form

6/p =  - b \  

(*)

w here a, &, c are th e  semi-axes of th e  e llip so id .
I t  is seen from  th e  e q u a tio n  (*) th a t  th e  co o rd in a te  

p lan es are^the p lanes of sy m m etry  of th e  e llip so id , and  th e  
o rig in  is th e  cen tre  of sy m m etry .

L ik e  th e  e llip se  w h ich  is o b ta in ed  from  th e  circ le  
b y  u n ifo rm  com pression , an y  e llip so id  is gen era ted  b y  
u n ifo rm ly  com pressing  a sphere  w ith  re sp ec t to  tw o m u ­
tu a l ly  p e rp e n d ic u la r  p lanes. N am e ly , if a is th e  g rea tes t 
sem i-ax is of th e  e ll ip so id , th e n  i t  can  be o b ta in e d  from

10-0406
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the sphere
x2 . jy2 . Z2 
a2 ' a2 ' a2

by uniformly compressing it with respect to the #z/-plane 
with the compression ratio cla and with respect to the 
arz-plane with the compression ratio bla.

If two semi-axes of an ellipsoid are equal, for instance, 
a =  by then it is called an ellipsoid of revolution.

T  +  ̂  +  7 - 1 ^ '

Intersecting it with any plane z = h parallel to the 
xy-plane, we obtain a circle

! +  */2= ( l - - S - ) a 2, 2 = h

with centre on the 2-axis. Hence, in this case the ellipsoid 
is generated by revolving the ellipse

—2 + —i---- 1 = 0 ,a2 ' c2

contained in the #z-plane about the z-axis (Fig. 75).
I f  all the three semi-axes are equal, then it represents 

a sphere.
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The line of intersection of an ellipsoid with an arbitrary 
plane is an ellipse.

Indeed, this line represents a curve of the second order. 
Since this line is finite (the ellipsoid is a finite figure), 
it cannot ^be a ^hyperbola, 
or a (parabola. Nor can it 
be a jpair ôf straight lines, 
and consequently it is an 
ellipse..

EXERCISES

1. If a < c , then the ellip­
soid of revolution

t 2 7,2 - 2
—  +  — +  —  =  1t2 “  „2 “  „2 X 1

represents a locus of points 
the sum of whose distances 
from two given points (the 
foci) are constant. Find the foci of the ellipsoid.

2. Suppose we have an ellipsoid
ax2 +  |3i/2 +  yz2 +  6 =  0.

Show that if the surface
cc*2 +  fa/2 +  yz2 +  6 -  K {x2 +  y2 + z2 + ii) =  0

decomposes into a pair of planes, then these planes inter­
sect the ellipsoid along circles. Use this fact to justify 
the method of finding circular sections of the ellipsoid.

3. Where are the points in space situated for which
t’2 7,2
i ^  +  ^  +  ̂ - K O ?

4. Show that the ellipsoid

a2 ^  b2 ^  c2

may be specified by the equations in parametric form: 
x =  a cos u cos z;, y =  b cos u sin u, z =  c sin u.

10*
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5. What is the surface 
fa x  +  bxy +  caz)2 +  (a2x -f b2y +  c2z)2 +

+  (a3x +  bsy -f c3z)2 =  1,
if

bi Ci
a2 h cz
aZ &3

^ 0 ?

Sec. 7-4. Hyperboloids

Like the case of the ellipsoid, the equation of hyperbo­
loids can be reduced to the form

+  E l _ i  =  0n2 I ^  „2 X

(a hyperboloid of one sheet, Fig. 76),

+  J'L__£L +  1 =  0^  b2 c2 ^

(a hyperboloid of two sheets, Fig. 77)«
In both hyperboloids the coordinate planes serve as 

the planes of symmetry, and the origin of coordinates as 
the centre of symmetry.

If the semi-axes a and b of the hyperboloid are equal, 
then it is called a hyperboloid of revolution and is obtained 
by revolving (about the 2-axis) the hyperbola

1 = 0 , y = 0

in the case of a hyperboloid of one sheet and the hyperbola
X 2
a2 - 4 r + l = 0 , y = o

in the case of a hyperboloid of two sheets.
A general-type hyperboloid (a =# b) can be obtained 

from a hyperboloid of revolution (a =  b) by uniformly
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compressing (or stretching) the latter with respect to 
the xz-plane in the ratio bla.

Hyperboloids are cut by an arbitrary plane in various 
conic sections. For instance, the planes z =  h parallel

to the a^-plane cut a hyperboloid of one sheet 

in ellipses

r 2 7i 2 7 2—  A -l____ I----1 = 0
a2 ^  b2 e2

—  +  -^-— —  — 1 - 0  z — ha2 +  b2 c2 1 — U’ Z n '

and the planes y — k (| h \ b) parallel to the zz-plane 
in hyperbolas

5 — ? ” i + - S = o .
The plane y =  b intersects the hyperboloid along two 

straight lines:
X

a
2

T y = b.
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EXERCISES

1. Find the circular sections of the hyperboloid
or* 2 7i2 o2

7  +  { r - T - l ! s 0 -
2. Show that through any point in space not belonging 

to the coordinate planes, there pass three surfaces of the 
family

x2 . If2
C*+*. =  1

(?t, the parameter): an ellipsoid, a hyperboloid of one 
sheet, and a hyperboloid of two sheets.

Sec. 7-5. Paraboloids
The equations of paraboloids are reduced to the form

z =  - r  +  -jTa2 1 b2

(an elliptic paraboloid, Fig. 78),

z =  — —^1 
a2 b2

(a hyperbolic paraboloid, Fig. 79).
The xz- and yz-planesare the planes of symmetry of par­

aboloids. TheirJ intersection (the z-axis) is called the 
axis of a paraboloid, and the intersection of its axis with 
the surface is termed the vertex.

If a = b an elliptic paraboloid is said to be a paraboloid 
of revolution. It is formed by revolving a parabola

about the z-axis. This is the special case of the elliptic 
paraboloid in which the cross-sections perpendicular 
to the axis are circles.

A general-type elliptic paraboloid can be obtained 
from a paraboloid of revolution



Ch. 7. Surfaces of Second Order 151

by uniformly compressing (stretching) it with respect 
to the xz-plane.

Both paraboloids (elliptic and hyperbolic) are cut by 
planes parallel to the xz- and yz-planes in parabolas that

are parallel and equal. Indeed, the planes x =  h cut 
an elliptic paraboloid in parabolas

If each of these parabolas is displaced in the direction 
of 2, by a line segment &2/a2, then we obtain one and the 
same parabola

Whence it follows that an elliptic paraboloid is generated
y 2

by translating a parabola z =  ̂ y x — 0, with its vertex
X 2moving along a parabola z =  ^  » V = 0 (Fig- 80).

A hyperbolic paraboloid is generated in a similar way 
(Fig. 81).
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The planes parallel to the cn/-plane, except for this 
plane itself, cut an elliptic paraboloid in ellipses, and

a hyperbolic paraboloid in hyperbolas. The xy-plane 
intersects a hyperbolic paraboloid along two straight 
lines.

EXERCISES

1. Show 'that an elliptic paraboloid of revolution rep­
resents a locus of points equidistant from a plane and 
a point (the focus). Find the focus of the elliptic parab­
oloid

2. Show that no plane cuts an elliptic paraboloid in 
hyperbolas and a hyperbolic paraboloid in ellipses.

Sec. 7-6. The Cone and Cylinders
The equation of the cone and cylinders of the second 

order may be written in the form

■ fr4 - |r - -~ r= = 0 (a cone, Fig. 82),

-|j-+  — 1 =  0 (an elliptic cylinder, Fig. 83),

-p- — -p— 1 =  0 (a hyperbolic cylinder. Fig. 84),

-̂ 5— py =  0 (a parabolic cylinder. Fig. 85).
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An arbitrary cone is obtained from a circular cone
ti>2 h2 7 2—  4 .1__ i -  =  0y.2 ^  „2 v

by compressing (stretching) it uniformly with respect 
to the #z-plane.

Elliptic, hyperbolic, and parabolic cylinders intersect 
the ary-plane along an ellipse, hyperbola, and parabola,
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respectively, and are generated by straight lines parallel 
to the z-axis which intersect the mentioned curves.

An arbitrary elliptic cylinder is obtained from a circu­
lar cylinder by compressing (stretching) the latter uni­
formly with respect to the xz-plane.

We conclude with a note that the cone

——|——____i_ =  oa2 ^  b2 c2 *
which is called the asymptotic cone, is related with the 
hyperboloids of one and two sheets

in a natural way.
Any plane passing through the z-axis cuts the hyper­

boloids in hyperbolas, and the cone along two elements 
which are the asymptotes of these hyperbolas. In partic­
ular, the xz-plane (y =  0) cuts the hyperboloids in 
hyperbolas

and the cone along two straight lines
X2
■J2

which are the asymptotes of these hyperbolas.

EXERCISES

1. Show that the equation of a circular cone with the 
vertex at the origin, the axis — =  — , and theA V
vertex angle 2a may be written in the form 

Qlx +  ny +  vz)2 _ ,  ,2

2. Show that the equation of a circular cylinder of 
radius B  and with the axis t- =  ~  — may be writtenA [A V
in the form

x2 +  y2,+ *2 — B2 (Xx +  p y +  vz)2 
A,2+ p 2 +  V* *
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Sec. 7-7. Rectilinear Generators 
on Quadric Surfaces

Cones and cylinders are not the only surfaces of the 
second order containing rectilinear generators. A hyper­
boloid of one sheet and a hyperbolic paraboloid turn out 
to possess this property as well.

Indeed, any straight line specified by the equations

• - M T  +  -I-). ‘ - i ( T - i ) .  <•>
lies on the hyperbolic paraboloid

since any point (x , i/, z) satisfying the equation (*) also 
satisfies the equation (**) which is obtained from them 
as a corollary by termwise multiplication.

In  addition to the family g%, one more family of straight 
lines g{ is located on a hyperbolic paraboloid:

Analogously: on the hyperboloid of one sheet
7»2 7*2

4 r  +  l r - 4 — 1 =  0
there are two families of rectilinear generators

In both cases (a hyperbolic paraboloid and hyperboloid 
of one sheet) rectilinear generators belonging to one family 
do not intersect, whereas those belonging to different families 
intersect.

The presence of rectilinear generators on the surfaces 
of a hyperbolic paraboloid and a hyperboloid of one 
sheet makes it possible to introduce a new method of gen­
erating these surfaces. Namely, let us take three recti­
linear generators glt g2, g3 belonging to one family.
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Then each rectilinear generator g belonging to the second 
family intersects gu g2, g3. Consequently, the surface 
is generated by the straight lines g which intersect the 
three given lines (Fig. 86).

As to the hyperboloid of revolution of one sheet, it is 
formed also by revolving any of its rectilinear generators 
about the axis of the ruled surface (Fig. 87).

We conclude with a note that there are rectilinear gen- 
erators on other quadric surfaces, but only imaginary. 
For instance, on the ellipsoid

^  + i r + ^ ~  1 =  0

there are located two families of imaginary straight lines:

EXERCISES

1. Show that the plane —  — ^  +  z ~^z° =  0 
passing through the point (x0, i/0, z0) of the hyperbolic 
paraboloid “  fs +  2 =  0 intersects the paraboloid
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along two rectilinear generators belonging to two different 
families.

2. Find tlie rectilinear generators of the hyperbolic 
paraboloid z =  axy.

3. Form the equation of a surface generated by straight 
lines parallel to the zy-plane and intersecting two given 
skew lines.

Sec, 7-8. Diameters and Diametral Planes 
of a Quadric Surface

A straight line, as a rule, intersects a quadric surface 
at two points. If there are two points of intersection, then 
the line segment with the end-points at the points of 
intersection is called the chord.

The mid-points of parallel chords of a quadric surface lie 
in a plane (termed the diametral plane).

Let us prove this. As it was shown in Sec. 7-1, there 
exists a system of coordinates in which the equation of 
the surface has the form
a^x 2 +  a22y2 +  CL3 3 Z2 +  2axx +  2a2y +  2a3z + a =  0. (*) 

Let the chords be parallel to the line v  =  — =  —-,
A p  V ’

and let x , y, z denote the coordinates of a mid-point 
of an arbitrary chord. Then the coordinates of the end­
points of the chord may be written in the form x =  
=  x +  Xt, y — y p,£, z =  z +  vt for one end, and
x = x — kt, y =  y — [it, z — z — vt for the other.

Since the end-points of the chord belong to the surface, 
their coordinates satisfy the equation (*). Whence

ai±x2 +  a22y2 +  a33z2 +  2 axx +  2 a2y +  2 a3z +  a +
+  21 (Xaxlx +  pa22y +  va33z +  %a1 +  pa2 +  va3) +

+  t* (anK2 +  a22p2 +  a33v2) =  0.

Since this equality holds irrespective of the sign taken 
for t , the coefficient of t is equal to zero:

% (an x +  ax) +  p {a22y +  a2) +  v (a33z +  a3) =  0. (**)
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Thus, the coordinates of the mid-points of chords satisfy 
the equation of the plane which was required to be proved'.

Obviously, if a surface has a centre, then the diametral 
plane passes through the centre.

In  the case of the paraboloid (a33 =  0) all diametral planes 
are parallel to its axis (to the z~axis).

An elliptic (hyperbolic) cylinder has an infinite number 
of centres situated on its axis. Therefore, each diametral 
plane of the cylinder passes through its axis. This circum­
stance is reflected in the equation of diametral planes. 
In the case of a parabolic cylinder all diametral planes 
are parallel.

The diametral planes of the cone pass throughjits vertex.
Diametral planes possess the following general proper­

ty: the diametral planes corresponding to the chords par­
allel to the plane a either intersect along a straight line g, 
or are parallel. The diametral plane corresponding to the 
chords parallel to g is parallel to a.

Let us prove this. Let e (A,, [x, v) and er (A', jx', v') 
be non-zero, non-parallel vectors in the plane a. Then 
any vector^contained in this plane may be represented 
in the form e% (£A +  g'A', £|x +  g'p/, +  £V). The
diametral plane corresponding to the chords parallel 
to the vector will be
I  {A ( a ^ x  -f- a 4) 4 - |x ( a ^ y  4~ a 2) +  v  (a 33z -1- a 3)} 4~

+  V { A ' (aa x 4 ~  # l )  +  (# 2 2 y 4 *  # 2 )  4" (# 3 3 z  4~ # 3 ) }  =  0

and, consequently, for any tf passes through the line 
of intersection of the planes

A (aiix + al) +  \i(a22y + a2)+ v (a 33z + a3) = 0, \
> I ]|( \

A' (a^x -j- af) +  (# 2 2 y +  # 2 )  4" v/ (#33z +  # 3 )  =  J
if they intersect, and is parallel to them if the planes 
are parallel. Suppose the planes (***) intersect and 
(A", fx", v") is a vector parallel to the line of inter­
section. Then

A"Aau 4~ (i,,|x#22 +  5=3
A*A'au  -f* jr V #22 4“ v v a33 =  Oj ( * )
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(parallelism of the vector (A/\ p", v") to the planes (***)).
The diametral plane corresponding to the chords parallel 

to the vector (k"y p", v") will be
%n (cl11lx  -|- ax) +  \i" (a%9y +  cl2) 4* v" (0332 +  a3) =  0.

From the conditions (****) it follows that this plane 
is parallel to the vector e (A, p, v), e f (A/, p ', v') and, 
consequently, is parallel to the plane a  which contains 
them.



Chapter 8

Investigating Quadric Curves 
and Surfaces Specified 

by Equations of the General Form

Sec. 8-1. Transformation of the Quadratic Form 
to New Variables

The quadratic form of variables xv x2, . . xn is de­
fined as a homogeneous polynomial of the second degree 
with respect to these variables

®ijxixj (ttij — &ji) •i, 3
The discriminant of a quadratic form is defined as a de­

terminant formed from its coefficients:

a i l a i2 .• * atn

D  = a21 a22 • • * a2n

®7ll “ m  • • ' a nn
Let us replace the variables in the quadratic form ac­

cording to the formulas
x i = a iix1 +  ai2x2 +  • • • +  a ln^ ,
x2 ~  a2i^i "f* a22̂ 2 “L • • • "f~

=  a nlx; +  an2x\ +  - . .  +  annx'n-
This yields a quadratic form with respect to the variables 

Namely:
2  dijXiX] =  2  ai} ( 2  ocikx'k) ( 2  ctjixl) =
i, j i, j h I

=  2  (2 x'hX'i =  2 d ’u x ’k x ih,l i,j h,l
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where
&hl =  2  Q'ij&ihG'jl* i, 3

Let us find out what the discriminant D' of the obtained 
form equals to. Put

2j aijG'ik ~  bjh* (*)i
Then

aki =  2 bjkaji
3

and, consequently,

a l l  • . . 0*m b n  • •’ * ^171 « 1 1  ‘ * * « l / l

Onl •
/

• • tlnn bni • ' * 7̂177 « n l  * * ' ^7177.

But according to the formulas (*)
bH . • • &ln an *• * 1̂77 a n • • af n

bm • • * bjui a nl * '' • a nn a*i ** * a nn
Thus,

Df = D
an . ,■ • aln

am • * * &nn
i.e. the discriminant of the transformed form is equal to the 
discriminant of the initial form multiplied by the square 
of the determinant of transformation coefficients.

EXERCISES

1. Show that the discriminant of the quadratic form 
( a ^  +  a2x2 +  asx3 +  a4x4) (bxx± +  b2x2 +  63̂ 3 +
is equal to zero.

2. Compute the discriminant of the quadratic form of 
the variables xx, x2, x3, x4:

(2 «,*,)2+ (2 W 2 + (2 V,)2 + (2 d,*y.i i i i
1 1 - 0 4 0 6
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Sec. 8-2. Invariants of the Equations 
of Quadric Curves and Surfaces 

with Reference to Transformation of Coordinates
Suppose we have an equation of a quadric surface

an x2 +  2a12xy +  . . . +  a44 =  0 (*)
in a system of rectangular Cartesian coordinates. The 
equation of this surface in any other system of rectangular 
Cartesian coordinates x'y'z' is obtained from the equa­
tion (*) if instead of x, y, z we substitute their expres­
sions in terms of x , z/\ z' according to the formulas 
introduced in Sec. 5-4:

x =  alxx' +  a12y' +  [a15z + ja l5
y =  a 21x +  a  22y' +  a  23z' +  a 2,
z — oc31x' +  oc32y' +  a  33z' +  a 3.

The equation of the surface in the new coordinate system
will be

aiXx'2 + 2a\2x'y' +  . . . +  a' 4 =  0.
The function cp (au , a12, . . ., a44), which is not a 

constant is called the invariant of the equation of the sur­
face with reference to the transformation of the coor­
dinates if its values are independent of the coordinate 
system to which the surface is referred, i.e. if

(p ( # n ,  # 1 2 ?  • • • » ^ 4 4 )  =  *P ( ^ n >  # 1 2 ’ • * * ) # 4 4 ) ’ 

whatever the system of coordinates x'y'z' is.
Now we are going to find one of the basic invariants of 

the equation of the surface.
Along with transition to the new coordinate system 

x'y 'z 'y we shall consider the transformation of the quad­
ratic form
ai\X\ T" a22X\ 4~ #33^3 4" âi2XiX2 4" 4“ %G'31X3Xi —

— X (x l+ x l + xl)
to new variables x\y x'21 xz according to the formulas

X 1 =  a i l ^ i  4 “ &12X 2 4~  CCi3 X 3> 1

^2 =  a 21^i 4“ 0̂ 22̂ 2 4~  ̂ (**)
x3 — &3iXi 4“ &32X2 4“ &38X3* J
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As a result of this transformation the first part of the 
quadratic form, up to the term X [x] +  x\ +  #3), will 
take the form

a 'nX? + a2*X? +  «!»*?
and the coefficients a\j will be the same as in the equation 
of the surface after the transition to the coordinate system 
x , y' j z'. As far as the term X (xf +  x\ +  xl) is con­
cerned, it will be transformed into X (x z -f- x z +  x'32) 
by virtue of the orthogonality conditions which are satis­
fied by the coefficients a ( s e e  Sec. 5-4).

Since the determinant of transformation coefficients (**) 
is equal to ± 1, the discriminants of the quadratic forms 
before and after the transformation are equal. Conse­
quently,

#11— X a i2 a iS
a 2l a 22 —  'X &23

a3i a32 ci33— X
is an invariant of the equation of the surface for any X.

The determinant I  (X) represents a polynomial with 
respect to X:

I  (%) =  +  XH± -  XI2 +  / 3,
where

I \  —  a l l  +  # 2 2  H” #33?

#11  a 12 

#21  # 2 2
+

*22 *23

#32 #33
+

#33 #31

ai3 an

#11 a i2  #13

h = #21 #22 #23 •

#31 a 32 a 33

Since for two different coordinate systems xyz and 
x'y'z'

- x * + i ixz- i 2x + i 3=  — xs ~\~ /'X2—i'2x~\- r z
for all X, then I x =  /J, / 2 =  / ' ,  I 3 = I'3 and, conse­
quently, I ly / 2, I 3 are invariants of the equation of the 
surface.
11*
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Let us now show that 
an

/* =
021
a 3i

410,

a i2

022
a32
042

013
023
033
043

a l4

a 24

f l34

044
is also an invariant.

The determinant / 4 represents the discriminant of the 
quadratic form

a \ \ x i  " b  2 0 i 2 0 ‘l 0 :2 ~ b  * • • *"b 0 4 4 ^ 4 *

Let us pass over to new variables x\ using the formulas
Xi = +  a 120*2 +  +  «14<,
x2 — a2ixi H“ a22*̂2 *b 2̂3̂ 3 “b 0&24#4 • . x§ I ,  , ,  . ,  ( * * * )
z3 =  aai^i +  3̂2̂ 2 +  a33%3 +  >
xk = 0-x't +  ()•#' + 0-^3 +  1*#'.

As a result we obtain the form
a'11x'12+2a'12x'1x'2 +  . . . + a'u x'42,

where a\j are the same as in the transformed equation 
of the surface.

Since the determinant of transformation coefficients 
(***) equal to the determinant of transformation coef­
ficients (**) is equal?to ± 1, the discriminants of the 
initial and transformed forms are equal, i.e.

0 1 1  • ‘ • 0 1 4 a i i  * . . 0 14

0 4 i  • '. . 0 44 0 4 1  * * * a 44

and the determinant / 4 is really an invariant of the equa­
tion of the surface.

Reasoning just in the same way, we obtain the invariants

! ( % )  =
0i£ —" “K  

021

012 

022 —  ^
, /*  = 011 “b  022 »

CO II

011 012

021 022
* CO II

011 012 013 

021 022 023 

031 0 32 033
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for the equation of a quadric curve
alxx2 +  2a12xy +  a22y2 + 2 alsx +  2 a23y +  as3 =  0 

with reference to the transformation of coordinates.

EXERCISES

1. Compute the invariants of the equation of a surface 
ax2 +  2bxy +  cy2 +  2ax +  2$y +  2yz +  8 =  0.

2, Compute the invariants of the equation of a surface
x2 +  y* +  z2 — &2 (a# +  +  cz)2 =  0.

Sec, 8-3. Investigating a Quadric Curve 
by Its Equation in Arbitrary Coordinates

Let there be given a quadric curve in arbitrary Carte­
sian coordinates xyz:

axlx2 +  2 a12xy + a22y2 +  2 a13x +  2 a2Sy + aS3 =  0.
As we showed in Sec. 3-8, by transition to a new coordi­

nate system, the equation of a curve may be reduced 
to the form

ax2 +  Pi/2 +  ax +  by +  c =  0.
Without finding the coordinate system itself, we can 

simply find the coefficients a and P by means of the 
invariant I  (X). Indeed,

a 1 o — X ai2

0 "CD 1 >> a2\ a22 — ̂
Whence it is seen that a and p are the roots of the 

equation I  ( )̂ =  0, i.e. of the equation
X2 -  I xX +  J 2 =  0.

Suppose both roots are non-zero (it will happen if 
I 2 0). Then, as it was shown in the*'same Sec. 3-8, 
the equation of the curve can be reduced to the form

ax2 +  p y2 +  y =  0 
by translating the coordinate system.
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It is not difficult to find the coefficient y using the invari­
ant / 3. We have

a 0 0 a i i a i2 a l3

0 P 0 =  / *  = a 2i a 22 a 23

0 0 7 a 3l a 32 & to V5

Whence

Thus, if J2 =+ 0, then the equation of the curve in an 
appropriate system.. of coordinates will take the form

A.1a:2 +  X2y24--^. = 0 ,

wfere Xx and X2 are the roots of the equation 
au — X ai2 _ q
2̂1 2̂2 — ̂

Let us now assume that one of the roots of the equation 
/  (X) =  0 is equal to zero (it will happen if I % =  0), 
Then one of the coefficients either a, or p is equal to 
zero; for definiteness let a= 0 . In this case (see Sec. 3-8) 
the curve is specified either by

py2 +  2yx =  0
or by

P*/2 + 6  =  0,
namely by the first equation if I 3 += 0, and by the second 
equation if / 3 =  0.

Let / 3 =+ 0 and, consequently, the curve is specified 
by the equation

P*/2 +  2yx =  0.
From the equation

X2 -  I xX +  / 2 =  0
with 12 — 0 we find p =  I x; y is found using the in­
variant / 3. Namely:

0 0 y 
0 p 0 
y 0 0

=  / 3.
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Whence

Thus, if / 2 =  0, / 3 0 the curve in the corresponding
coordinates is specified by the equation

Let us finally consider the case when I 2 = I 3 = 0. 
We change the coefficients of the equation by small 
quantities eti. We may deal with stj in such a way that 
/ 2 will become non-zero and the equation of the curve 
can be reduced to the form

And now let us proceed to the limit as etj tend to zero. 
Then the equation (*) will turn into the canonical equa­
tion of the original curve.

Example. Let / 2 =  0, I 3 =  0, a22 ¥= 0. We put en =  
=  t, and all the remaining equal to zero. Then, pro­
ceeding to the limit in the equation (*), we get

We conclude with the following note: the vanishing 
of the invariant / 3 is a necessary and sufficient condition 
for decomposing a quadric curve into a pair of straight 
lines. To be convinced of this it is sufficient to compute 
/ 3 for the canonical forms of equations of curves.

1. What condition must be satisfied by Jifor the quad­
ric curve
K i* 2 +  2a12a;z/ +  . . . +  #33) +

+  ^ (^n#2 +  2b12xy +  . . . +  ^33) ^  ®

V 2+ ^ 2+ - r = °
1 2

(*)

a 22 a 23

71a~2 + — -3— =  0
C22'22

EXERCISES
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to decompose into a pair of straight lines? Show that the 
lines into which this curve decomposes pass through the 
points of intersection of the curves

ctuX2 +  2a17xy + . . . + a33 = 0,
^ii#2 +  2b12xy +  . . . +  &33 =  0.

2. The biquadratic equation
aQx4 +  dxxz +  a2x2 -f d3x +  a4 =  0

is equivalent to the system
d0 V2 +  dxxy +  a2x2 +  a3;r +  a4 =  0, y — x2 =  0.

Reduce the solution of the biquadratic equation to solving 
a cubic and a quadratic equations (see Exercise 1).

3. The equation of a hyperbola referred to the centre 
and one of its asymptotes has the form

i Py = ax +  ,

Express a and p in terms of the coefficients of the equa­
tion of this hyperbola in arbitrary coordinates.

4. If equal, mutually perpendicular diameters of an 
ellipse are taken for the coordinate axes, then its equation 
will take the form

£2 +  z/2 +  2 axy + 8  =  0.
Find a and 8 given the equation of the ellipse in arbitrary 
coordinates.

Sec. 8-4. Investigating 
a Quadric Surface Specified 

by an Equation in Arbitrary Coordinates
Let a quadric surface be specified by an equation in 

an arbitrary system of rectangular coordinates xyz:
an x2 +  2a12xy +  . . . +  a4d = 0.

As is shown in Sec. 7-1, by transition to a new system 
of coordinates, the equation of a surface can be reduced 
to the form

ax2 +  py2 +  yz2 +  ax +  by +  cz +  d =  0.
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Using the invariant I  (X), we get
a  — X 0

I(X) = 0
0

p - x

0

0
0

7 — X
- X 3 +  / 1X2 — / 2X + 13.

Thus, a, p, y are the roots of the equation I  (X) =  0.
Suppose all the roots are non-zero ( /3 =̂= 0). In this case, 

as is known from Sec. 7-1, by transition to new coordi­
nates the equation is reduced to the form

ax2, +  p y2 +  yz2 +  6 =  0.
We find the coefficient 8 using the invariant / 4. 

Namely:
a 0

P au • . . a14

0
V a41 . . . a44

8
Whence

Thus, if / 3 0 then by tt'ansition to a new coordinate
system., the equation is reduced to the form

Xi#2 -j- X2z/2 -f- X3z2 +  ~y ~ — 0,
J 3

where Xx, X2, X3 are the roots of the equation I  (X) =  0.
Let us now assume that one of the roots of the equation 

/  (X) =  0 is equal to zero, the two others being different 
from zero. This will happen if J 3 =  0, but / 2 0. Then,
by transition to new coordinates (see Sec. 7-1), the equa­
tion of the surface is reduced to one of the following 
forms ,

a x 2 +  py 2 -f 2p z  =  0, 
a x 2 +  pz/2 +  8 -  0 .

The first of them corresponds to the case / 4 =̂= 0, and 
the second to the case J 4 =  0.
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In the first case the coefficient p is found from the 
invariant / 4:

0a 0 
0 p 
0 0 
0 0

0
0
0
p

=  —a  Pp2 =  / 4,

and the equation of the surface will be

Xtxz +  A,2</2 +  2 ] /"  — ̂ - z  = 0.

In the case J 4 =  0 we change the coefficients of the 
equation by the quantities so that I s =̂= 0. Then, 
by transition to an appropriate system of coordinates, 
the equation is reduced to the form

K xZ+ + V 2 +  4 1 =  °-

Proceeding now to the limit as e*/ tends to zero, we obtain 
the canonical form of the equation of our surface. 

Example. Let / 3 =  / 4 =  0, but
mi

*21

ai2 
a  22

=*0.

We put e33 =  t, and the remaining equal to zero. 
Then

a l l  a 12 f l14

a 21 a 22 ®24

h i t ) a 4 l  ^42 a 44

h i t ) a l l  a '

a 2 l  a 22

The canonical form of the equation of the surface will be
an
a 21

a4i

a 12 au
a22 a24
a \2  f l44

a l l  a 12

a21 ,a22

0.%1x2 + X2yz-+
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Finally, when two roots of the equation I  (X) =  0 are 
equal to zero, the equation of the surface is reduced to 
one of the forms:

ax2 +  =  0 or ax2 +  6 =  0.
The coefficients p and 6 are found by varying the coeffi­
cients of the equation of the surface as in the preceding 
case.

EXERCISES

1. Find the canonical form of the equation of a surface 
(ax +  by +  cz +  d) (axx +b1 y +  ctz +  d4) =  0.

2. Show that if J 4 =  0, then the surface represents 
either a cone, or a cylinder, or decomposes into a pair 
of planes.

3. Show that if / 4 =  0 and / 3 =  0, then the surface 
decomposes into a pair of planes.

Sec. 8-5. Diameters of a Curve,
Diametral Planes of a Surface.

The Centre of a Curve and a Surface
Let a quadric surface be specified by an equation in 

an arbitrary system of rectangular Cartesian coordinates
an x2 +  2 a12xy +  . . .  +  #44 =  0. (*)

For the sake of brevity we introduce the following 
notation:

2 F =  anx2 +  2 a12xy +  . . .  +  a44,
F x =  a^x  +  â %y +  a^z +  #i4,
F y  =  a 2\ X  +  # 2 2  y +  # 2 3 Z +  #241

F  z —  a 31X  +  # 3 2  V +  # 3 3 Z +  #34*

We already know (from Sec. 7-8) that the mid-points 
of the chords of a given direction X : jx : v, i.e. of those 
parallel to the line
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lie  in  th e  d ia m e tra l  p lan e . F o rm  its  e q u a tio n  if th e  surface 
is specified b y  th e  eq u a tio n  (*).

L e t (,x, y, z) b e j th e  m id -p o in t of an  a rb it ra ry  chord . 
T he co o rd in a tes  of th e  en d -p o in ts  m ay  be w ritte n  in  
th e  form

xx =  x +  Xt, i/i =  y +  \it, zx =  z +  vt, 
x2 =  x — Xt, y<i — y — |x£, 22 =  z — vt.

S u b s ti tu t in g  th ese  co o rd in a tes  in to  th e  eq u a tio n  of 
th e  su rface, we get

2F (x, y, z) ±  21 {XFx (x, y, z) +  |xFy (x, y, z) +

+  vFz (x, y, z ) )+  t2 (anX2 +  a12\i2 +  a93v2 +
- f  2a12X\n +  2 a 23p,v +  2 a31vX) =  0.

I t  fo llow s from  th is  eq u a tio n  th a t  th e  coefficient of t 
m u st be eq u a l to  zero:

XFx -f- |xFy +  vFz =  0, (**)
This is the equation of the diametral plane corresponding 

to the chords of the given direction % : jx : v.
I f  a surface has a cen tre , th en  each of th e  d ia m e tra l  

p lan es  passes th ro u g h  th e  cen tre . C o nsequen tly , th e  
cen tre  of a surface is d e te rm in ed  from  th e  eq u a tio n s

Fx =  0, Fy =  0, Fz =  0. (***)

Q u ad ric  curves are considered ju s t in  an  analogous 
w ay . H ere  is th e  final re su lt.

Suppose a cu rve is specified b y  th e  eq u a tio n

20) =  ana? +  2a12xy +  a22y2 +  2a13a: +  2 a23y +  a 33= 0 .

W e p u t
G>x = anx +  a12y +  als,

== a2,lX +  ^22 y +  a 23*

T h en  the diameter corresponding to the chords of the direc­
tion X : \i, i.e. to those parallel to the straight line
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is specified by the equation
~f- (HCDy == 0.

The centre of the curve (if any) is determined from the 
system of equations

<DX =  0, CD y =  0.

EXERCISES

1. Show that if the origin is translated into the centre 
of the quadric curve

anz2 +  2 a12xy + a22y2 + 2 a13x +  2 a23y +  aS3 =  0,
then its equation will take the form

~f" %ai2xy -f- a22y2 +  -r- =  0.
J 2

2. Show that if the origin is translated into the centre 
of the quadric surface

axlx2 +  2a12xij +  . . . +  ait =  0,
then the equation of the surface will take the form

au x2 +  a22yz +  a33z2 +  2 ai2xy +  2 a23yz +  2a3izx - f ~  =  0.
J 3

Sec. 8-6. Axes of Symmetry of a Curve.
Planes of Symmetry of a Surface

Let us determine the planes of symmetry of a surface spe­
cified by an equation in arbitrary coordinates.

Suppose X ; : v is the direction perpendicular to the
plane of symmetry. Since the mid-points of the chords 
of the direction % : |x : v lie in the plane of symmetry, 
the latter is specified by the equation

%FX +  y>Fy\+  vF 2 =  0. (*)
Since the direction % : \i : v is perpendicular to the 

plane (*), then
a l A  +  a 12H>H~ a lS V    a21̂  +  <*22^ +  a 23V  

__  a 3 1 ^ H ~  0 3 2 ^  4 ~  g 3 3 V /  .

V
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Finding X : p, : v from this system of equations and sub­
stituting it into the equation (*), we get the equation of 
the plane of symmetry of the given surface.

To simplify the finding of X : p, : v from the system 
(**), let us denote by £ the common value of the three 
ratios (**). We then get an equivalent system

Whence we determine £ and substitute it into the sys­
tem (***) to find X : p, : v.

Knowing how to find the planes of symmetry of a sur­
face, it is not difficult to find the coordinate system in 
which the equation of the surface has the canonical 
form.

Let us give an example.
Suppose that as a result of investigation of invariants 

of a surface the latter turned out to be an ellipsoid. Then 
its canonical equation will be

We see that the coordinate planes are the planes of sym­
metry of the surface.

If the roots J-1} E2, £3 of the equation I  (£) =  0 are 
all different, then these planes are defined uniquely by 
the above mentioned method. But if there are equal 
roots among them, then this method yields no unique 
solution (the case of a surface of revolution), and to the 
requirement that the coordinate planes must be the 
planes of symmetry the condition of perpendicularity 
should be added.

Let us consider one more example. Suppose the surface 
is a hyperbolic paraboloid. In this case there are two

Since A, |x, v  are not equal to zero, we get

au £ aiz
a 2i  a 22 —  £  a 23 =  / ( £ ) = 0 .

a 3 i  #32 #33 Ea 3 3 —  I

'23

M 2 -f k2yz +  l 3zz +  -T4- =  0.
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and only two planes of symmetry. They are the coordi­
nate axes. The origin is located at the point of inter­
section of the axis of the hyperboloid (the line of inter­
section of the planes of symmetry) with the surface.

A similar investigation of quadric curves results in 
the following:

The axes of,'symmetry of a quadric curve are specified 
by the equations

Xd)* +  p,d>v =  0
From the system

(a l l  —  £ )  ^  +  ^12(X =  0?

(a 22 —  | )  [X =  0 ,

where £ is the root of the equation /  (£) =  0, we deter­
mine X : |x.

The system of coordinates in which the equation of 
the curve takes the canonical form is determined from 
the considerations analogous to those used for surfaces.

EXERCISES

1. Find the axis of the circular cone x2 +  y2 +  z2 — 
— (ax +by +  cz)2 =  0.

2. Find the vertex and the axis of the parabola (ax +  
+  by + c)2 +  ax +  fry +  y =  0.

Sec. 8-7. The Asymptotes of a Hyperbola.
The Asymptotic Cone of a Hyperboloid

Suppose a hyperbola is specified by an equation in 
arbitrary coordinates
2d) =  an x2 +  2a12xy +  a22y2 +

+  2a13# +  2a2slf ~b #33 “  0* (*)
Let us find the equation of its asymptotes, for which 
purpose we pass over to a new system of coordinates x'yf 
in which the equation of the hyperbola has the canonical 
form:

2d>' =  ax '2 +  pi/'2 +  y =  0.
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As we know (from sec 3-4), in this system of coordinates 
both asymptotes are specified by the equation

ax '2 +  Pv'2 =  Oi i.e. 2 0 ' — y =  0*
If we now come back to the coordinates xy, then for the 

hyperbola we shall obtain once again the equation (*), 
and consequently the equation 2d) — y =  0 for its 
asymptotes.

The constant 7, as is known from Sec. 8-3, is equal 
to / 3/ / 2. Hence, the equation of the asymptotes of a hyper­
bola specified by an equation in the general form will be

2<D-42- =  0.

Reasoning just in the same way when considering a 
hyperboloid (of one or two sheets)

2F = anx* +  2 a12xy +  • • . +  a44 =  0, 
we find the equation of its asymptotic cone 

2 F - - ^ -  = 0.
3

EXERCISES

1. Find the asymptotes of the hyperbola {ax +  by +  
+  c) {axx +  bpy -j- cx) =  const.

2. Find the asymptotes of the hyperbola % {ax +  by +  
+  c)2 +  p (axx +  bxy +  cx)* =  v, K\x <  0.

Sec. 8-8. A Tangent Line to a Curve.
A Tangent Plane to a Surface

Let a quadric curve be specified by an equation of the 
general form

20  =  ax 1#2 -f- 2a12xy #33 =  0*
Let 11s form the equation of its tangent line at 'an arbi­

trary point A 0 (.x0, y0).
A tangent line to a curve is defined as the limit of a se­

cant g when the point K  infinitely approaches A 0 
(Fig. 88).
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Let A (x, y) be an arbitrary point on the tangent line. 
We denote by A' (x , y') the point of the secant nearest 
to A . Obviously,^ when K -+ A 0, A ' -+A.

The coordinates of the point K in terms of|the coordi­
nates of A 0 and A ' may be written in the form

xk =  x o +  t (x' — x 0),
Vk =  Vo +  t (y ' — y 0).

Substituting the coordinates of the point K into the 
equation of the curve, we get
2<* lie =  2 <DL0 +  21 {(z' -  x0) <D* |Ao +

“t~ (y */o) Lo} “h {^u ix — xo)2 +
+  2a1 2  (x' — x 0) (y' — y 0) +  a 22 {yf — y 0)2} =  0,

where the subscript A 0 indicates that the coordinates of 
the point A 0 should be taken as x and y. Since the point

o

A 0 lies on the curve, <J) |Ao =  0. Therefore the equation 
may be reduced by t  We obtain
1 (x #0) (x0, y0) 2 (y yQ) (#0, y0) ~j-

 ̂{an (x ^o)2 “h 2tz12 (x xo) (V — .Vo) -h
+  «22 (v' —  Vo)2} =  o.

Let now K -+ A 0. Then U 0 ,  and A' -+A (i.e.
x ~+x, yf ->-y), and we get
(x -  Xq) <i>* (z0, Vo) +  (V ~  Vo) (x o, Vo) =  0- (*)
1 2 - 0 4 0 6
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This equationjtis| linear with respect to x and y, and 
therefore this^is an equation of a straight line. An arbit­
rary point A[ of the tangent line satisfies it. Hence, this 
is the equation of the tangent line.

A tangent plane to a surface at point A 0 is defined as 
the plane containing the tangent lines to all the curves on 
the surface emanating from A 0 (Fig. 89). The equation

of the tangent plane to a 
quadric surface at point 
A 0 (x0, yo, z0) will be:

2F =  a^x^ -}- ^a-^^xy ~\~
+  • * • “h #44 — 0.

Draw an arbitrary plane 
cr through the point A 0. It 
will cut the surface in a quad­
ric curve k0. Draw a line 

tangent to the curve ka at point A 0 and denote by 
A (x , y, z) an arbitrary point on this tangent (Fig. 90).

Take a point K  on ka close to A 0, and draw a secant g 
through the points A and K. Let A ' (xf, y', z )  be the 
point on the secant nearest to A. Obviously, if K ~+A0, 
then A ' ->~A.

The coordinates of the point K in terms of coordinates 
of A 0 and A ' may be expressed in the form xK =  x0 +  
+  t (xf — Xq), yK = y0 + t (y' — y0), zK =  z0 +  t (z! —
— z0)-

Substituting the coordinates of K into the equation 
of the surface, we get
2F \Ao +  21 {{xf -  x0) Fx |Ao +  (i9' “  Vo) Fy U  +

+  (z — z0) F z |A„} +  i2 {au (s' — z 0)2 +
+  2a12 (x' — x0) (y' — y0) +  . . . }  =  0. (**)

But 2F |A„ =  0, since the point A 0 is situated on the 
surface. Dividing the equation (**) by t and proceeding 
to the limit as K tends to A 0, we obtain

(x — x0)F x \A„ + (y— y0) Fu U  +  ( z - zo)^2 U, =  0.
This equation is linear with respect to x1 y, z and 

therefore specifies a plane. Since it is satisfied by the
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coordinates of any point A on the tangent ka at point A0 
whatever a is, it represents the equation of a tangent 
plane to a surface at point ^40.

EXERCISES

1. Show that a tangentfplane to a quadric surface at 
point P is parallel to the diametral plane corresponding 
to the chords parallel to the diameter passing through P.

2. Let 2<t> =  a1±x2 +  2a12xy +  . . . +  a33 =  0 be a 
quadric curve, and A 0 (x0, y0) a point outside this curve. 
Draw an arbitrary line g through A 0. Let A (#, y) be an 
arbitrary point on this line. The coordinates of any point 
B of the line g may be represented in the form

xB = xQ + t (x — x0), yB = yQ +  t (y — y0).
The values of the parameter t corresponding to the points 
Z?! and B 2 of intersection of the curve 2 0  =  0 with the 
line g are found from the quadric equation

20  (x0 + t (x — x0), y0 +  t (y — y0)) = 0. (***)
When the line g approaches the tangent, the roots of the 
equation (***) merge. Taking^ into consideration this 
fact, form the ^equation of the pair of tangent lines to a 
quadric curve emanating from the point A 0.

3. Form the equation of a cone with the vertex A 0 (xQ, 
yo, z0) touching the quadric surface 2F = 0.

4. Form the equation of a cylinder with the axis parallel 
to the straight line

x/X — yl(x z/v.
The cylinder is circumscribed about the quadric surface 
2 P = 0.

5. Show that the tangent plane to a hyperboloid of one 
sheet and to a hyperbolic paraboloid intersects the surface 
along two straight lines.

6. Show that the confocal quadric surfaces
. . *2 ... +  y2 .+ -_ * !
a2 +  X ^  b* +  X ^  

passing through point (x0, y0, z0) intersect at this point 
at right angles. It is assumed that the point does nol lie 
in any of the coordinate planes.
12*



Chapter 9 

Linear Transformations

Sec. 9-1. Orthogonal Transformations
Suppose an arbitrary figure F is carried into a figure F ' 

by motion, or by motion and mirror reflection. Then the 
figure Ff is said to be obtained from F by an orthogonal 
transformation. Obviously, the orthogonal transformation

of a figure leaves the distances 
between its points unchanged.

Let us find the formulas 
which establish the relation­
ship between the coordinates 
of an arbitrary points (,x, y, z) 
of^the figure F and the corre­
sponding point A' (.x y ' ,  z') 
of the figure F \

Let us imagine that the 
coordinate system s (#, y, z) 
is rigidly connected with the 
figure F. Then, as a result of 

an orthogonal transformation, it will go into a system 
of coordinates s{ with reference to which the coordinates 
of the point A' will be x, y, z (Fig. 91). Thus, the prob­
lem consists in that we have to express the coordinates 
of the point A' in the coordinate system s if its coordinates 
in the system s' are known.

As is known (from Sec. 5-4), the relationship between 
the coordinates of a point with reference to two systems 
of rectangular Cartesian coordinates is established by 
the formulas

x* =  atix -j- ai2y +  #132 +  uiky
I f '  ~  a Z \ x  +  a Z 2 ,y  +  a 2 Z Z  ~r a24?
z =  aZix -f- az2y +  +  a34,! (*)
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whose coefficients satisfy the following conditions

a \ \  4" a \ \  +  a 3l =  f  ? ^11^12 H" a 2 i a 22 +  a $ i a Z2 
a H" 2̂2 4" a32 =   ̂» a12a13 4’ a 22a 2S 4" ®32fl33

4" ®23 4" ^33 =  1 » a i 3 a i i  +  a 23a 21 4" ^33^31

Hence, taking into consideration all this, we come to 
a conclusion that any orthogonal transformation is speci­
fied by the formulas (*) whose coefficients satisfy the con­
ditions (**).

Let us show the converse that any transformation spec­
ified by1 the formulas (*) under the conditions (**) is an 
orthogonal transformation, i.e. the transformed figure is 
obtained from the given one by motion, or by motion 
and mirror reflection.

Let A x (xx, yx, zx) and A 2 (x2, y2, z2) be two arbitrary 
points of the figure F, and A[ (a;', y[, z[) and A\ (x'2, y2, z9) 
the corresponding points of the figure Ff. The square of 
the distance between the points A\ and A\ is equal to

{x\ — x'2)2 + (y\ — y'2)2 +  {z\ — <)2.

Substituting the expressionsTor'zj, x[„ y[, y\, zx, z[? accord­
ing" to" the formulas (*), and taking advantage of the 
conditions (**), we get

(xx — x2f  +  (yx — y2f  +  (zx — z2)2.

Hence, the distance between any two points of the 
figure F is equal to the distance between the correspond­
ing points of the figure F'. Consequently, F is congruent 
to F ', and F' is obtained from F by motion, or by motion 
and mirror reflection.

Orthogonal transformations possess the following geo­
metrically obvious properties which, however, may be 
verified with the aid of the formulas (*):

1. The successive application of two orthogonal transfor­
mations is an orthogonal transformation once again, i.e. 
if figure F' is obtained by an orthogonal transformation 
from F, and figure F" by an orthogonal transformation 
from F', then F" is obtained by an orthogonal transfor­
mation from F.
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2. The inverse of an orthogonal transformation is itself 
an orthogonal transformation, i.e. if F' is obtained by an 
orthogonal transformation from F, then F is obtained 
by an orthogonal transformation from F '.

3. An identity transformation, i.e. the transformation 
specified by the formulas

x = x, if =  y , z* = z,
is an orthogonal transformation.

Orthogonal transformations in the plane are defined 
similarly. They possess analogous properties and are spec­
ified by the formulas

x — anx -f- a12y -)- #13, 
y ~  a21X “1“ a22V “1“ a23»

whose coefficients satisfy the following conditions
a l + a l - i ,
<  +  tf222 =  l,

a 11̂ 12 ~h a2ia22 — 0.

Since the formulas for transforming rectangular Carte­
sian coordinates (see Sec. 2-7) coincide with the formulas 
of orthogonal transformations, then from the results of 
Sec. 3-8 concerning the reduction of the equations of 
quadric^curves to the canonical form, it follows that any 
quadric curve can be transformed by an orthogonal trans­
formation into a curve of one of the following types

ax2 +  Py2 +  y = 0, 
ax2 +  0z/2 =  0, 
ax2 -f- 2py =  0, 

ax2 +  q = 0,
:r2 -  0.

EXERCISES

1. Form the formulas of the orthogonal transformation 
which carries the plane xy (yz, xz) into itself, and the 
plane xy into the plane xz (yz).
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2. Form the formulas of the orthogonal transformation 
which leaves the origin in its place and brings the 2-axis 
into the straight line

x _  y __ z
% \l Vj *

Sec. 9-2. Affine Transformations

Orthogonal transformations are a particular case of 
more general transformations of figures, the so-called 
affine transformations. The latter are specified by the 
formulas

x * =  # 1 1 #  +  #12^/ #132 #14? 1

—  #2 1 ^  H“ # 2 2 £ /+ # 2 3 Z +  #24? /  (* )

z' =  a31a: + #32*/ + # 3 3 2  d” # 3 4 ? J
where the coefficients are any real numbers satisfying 
the only condition

A =
a n  #12  #13

#21 #22 #23 ^ o .
#31 #32 #33

Obviously, this definition is invariant with respect to the 
coordinate system chosen, since the coordinates of a point 
in one coordinate system are expressed linearly in terms 
of its coordinates in any other system of coordinates.

Affine transformations possess the following properties 
which are easily checked:

1. The successive application of two affine transformations 
is an affine transformation,

2. The inverse of an affine transformation is also an affine 
transformation,

3. The identity transformation is affine.
All these properties are easily verified with the aid of 

the formulas (*). Let us, for instance, check the second 
property.
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Solving the system of equations (*) with respect to 
x, y, z (the determinant of the system is non-zero), we get

* =  a'liX' +  +  #i'4? 1
y =  a 2 iX  +  # 2 2 #  +  # 2 3 ^  +  # 2 4 ’ f  ( * * * )

z =  a3ixf +  #32*4 +  #33̂  +  #34? J
where a\j (for £, 7 ^  3) represent the reduced algebraic 
cofactors of the elements afj in A. As is known, the deter­
minant A' formed from a\j is equal to A”1 =̂= 0. Whence 
it follows that the transformation associating the point 
(x, y, z) with the point (x', y \  z') according to the 
formulas (***), i.e. the transformation inverse to the 
affine one (*) is affine.J 

We conclude with an important note that an affine 
transformation is defined uniquely if there given the images 
of four points not lying in one plane. Indeed, substituting 
the coordinates of the given four points and their images 
into the first of the equations (*), we get

xi ~  anxi +  #122/1 +  #13̂  +  a14,
X2 #11**'2 +  #12#2 +  #13^2 4 “ #14?
xz =  anX3 +  #12#3 +  #13Z3 4 - #14?

X k =  # 1 1 ^ 4  “I" # 1 2 # 4  +  # 1 3 Z4 4"  # 14*

These equalities may be considered as a system of 
equations with respect to alv a12, a13l a14. The determi­
nant of the system

V i  * i  1

x2 y£  l
x 3 # 3  Z3 1

* 4  #4  *4 1

is equal (by absolute value) to six times the volume of a 
tetrahedron with the vertices at the given four points 
and, consequently, is non-zero. Hence, the quantities 
#11? #i2? #i3? #14 are defined uniquely from this system. 
It is proved in a similar way that the coefficients of two 
other formulas (*) are also defined uniquely.

x 2 Xi Vi — V\ — *1
=  — x 3 — x l CO

1 <5 1CO

#4 — x t Vk —  Vi z4 — Zi
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An affine transformation in the plane is defined uniquely 
if there are given the images of three points not lying on a 
straight line.

EXERCISES

1. Derive the formulas of the affine transformation 
which carries the points (0, 0, 0), (1, 0, 0), (0, 1, 0), 
(0, 0, 1) into the points (;x y Xl zx), (x2, y2, z*)> ten zs)>

»4. **)•
2. Derive the formulas of the affine transformation 

in the plane transferring the coordinate axes x and y 
into the two given lines

ax +  by +  c =  0, axx +  hxy +  cx =  0.

Sec. 9-3. The Affine Transformation 
of a Straight Line and a Plane

From the single-valued solvability of the formulas 
of the affine transformation

x — axxx “I- aX2y 4" ax̂ z -4" ^14?
y' =  n21x +  # 2 2 V 4- a%zz 4* ^24?
Z =  a$xX ~f~ ̂ 32y 4* 4~

A =
aH al2 ai3  

&2i  #22  #23 ¥= 0.
#31  a S2 #33

(*)

with respect to a;, y, and z it follows that the affine trans­
formation carries different points into different points, and 
that any point (x , y \  z )  is an image of some point (x, y , z).

Let us prove that the affine transformation carries a 
plane into a planef a straight line into a straight line, 
preserving parallelism.

Suppose cr is an arbitrary plane and
ax +  by +  cz +  d ~  0 (**)

is its equation. Under the affine transformation j(*) 
the plane a goes into some figure o'. Since the coordinates 
of each point of a satisfy the equation (**) and ^are lin-
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early expressed in terms of the coordinates of the corre­
sponding point of the figure o', then the coordinates of 
the points belonging to o' also satisfy the linear equation

a x ' +  b'y' +  c'z' d' =  0, (**')

which is obtained from (**) by replacing x , y , z by 
their linear expressions with respect to x ', y ', z( accord­
ing to the formulas (***) of Sec, 9-2. The equation (**') 
cannot be an identity, since introducing in it the vari­
ables x, y, z (instead of x*, y ', z') according to the 
formulas (*), we must get (**) once again.

Hence, o' lies in the plane specified by the equation 
(**'). Let us show that o' coincides with this plane. 
Indeed, let (x‘, y ', z )  be any point belonging to the 
plane (**'). Under the affine transformation inverse 
to (*) its image satisfies (**) and, consequently, 
belongs to a'. Whence we conclude that o' coincides 
with the plane (**') (and isj not its portion). This proves 
that under the affine transformation a plane goes into 
a plane.

Since under the affine transformation a plane goes into 
a plane and the inverse of the affine transformation is an 
affine transformation, different planes go into different 
planes.

Since under the affine transformation different points 
are carried into different points, then parallel planes are 
carried into parallel planes.

Since through a straight line there can be drawn two 
different planes, and under the affine transformation 
different planes go into different planes, then under the 
affine transformation a straight line goes into a straight line.

Since two parallel lines can be defined by the inter­
section of two parallel planes with a third plane, and 
parallel planes under the affine transformation go into 
parallel planes, then the affine transformation carries 
parallel lines into parallel lines.

Let us note in conclusion that the affine transformations 
in the plane possess analogous properties. In particular, 
under the affine transformation in the plane straight lines 
go into straight lines, and parallelism is preserved.
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EXERCISES

1. Find the planes into which the coordinate planes 
xy, yz, zx will go under the affine transformation (*).

2. Find the straight lines into which the coordinate 
axes will be carried under the affine transformation (*).

Sec. 9-4. The Principal Invariant 
of the Affine Transformation

Under the orthogonal transformation the distance be­
tween points remains unchanged. In this connection the 
distance between the points is an invariant of the orthog­
onal transformation.) We could mention many other 
invariants of the orthogonal transformation, for instance, 
the angle between straight lines, or the area of a triangle. 
The distance between points is not only the simplest 
but also the principal invariant, since the rest of the 
invariants can be expressed in its terms.

Under the affine transformation the distance between 
points, as a rule, undergoes a change, therefore the dis­
tance between points is not an invariant of the general 
affine transformation.

An affine ratio of three points on a straight line is the 
simplest and principal invariant of the affine transforma­
tion. The affine ratio of the points A , B, C on a straight 
line is defined as the number

( A B C ) = ^ .

Let us show that the affine ratio of three points on a 
straight line remains unchanged under the affine trans­
formation, i.e. if under an affine transformation the 
points A , By C go into the points A ', B ' , C \ then

(ABC) =  (A'B'C').
In general, we may consider that the points Ay By C 

lie on the a:-axis (the straight line AB  may be taken for 
the #-axis). Furthermore, we may consider that the points 
A ' , B ', Cf also lie on the #-axis, since applying an 
orthogonal transformation which obviously leaves the
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affine ratio unchanged (preserving the lengths of line 
segments) the three points A ', B \  C* can always be 
transferred onto the #-axis. In this case we have

(ABC) = xa — xb I
xB — %c\ ’ (A 'B'C) I XA ' ~ XB' 1

I xB’ — xc> I *

But the coordinates x of the points A ', B \  C' are related 
with the coordinates x of the points A, B, C by the equa­
tion

X — & iiX  ~\~

and the equality of the affine ratios (ABC) and (A 'B 'C) 
are checked in an obvious way.

EXERCISES

1. Show that there exists an affine transformation 
which maps a given arbitrary triangle into a regular one. 
Show that the point of intersection of medians goes into 
the point of intersection of medians.

2. Show that under an affine transformationjany given 
parallelogram can be mapped into a square. Is it pos­
sible to map any quadrilateral into a square applying 
an affine transformation?

3. Under what condition does the [affine [transforma­
tion of a plane specified by the formulas (*) of the pre­
ceding section leave some point fixed?

Sec. 9-5. Affine Transformations 
of Quadric Curves and Surfaces

Since the quadric curve is defined as a locus of points 
whose Cartesian coordinates satisfy an equation of the 
second degree, and the coordinates of a point are linearly 
expressed in terms of the coordinates of its image under 
the affine transformation, then under the affine transfor­
mation a quadric curve goes into a quadric curve.

Analogously, under the affine transformation a quadric 
surface is mapped onto a quadric surface.
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Since the affine transformation carries parallel lines 
into parallel lines and preserves the affine ratio of three 
points, in particular, the mid-point of a line segment goes 
into the mid-point of a line segment, then under the affine 
transformation the diameters of a quadric curve are carried 
into the diameters, moreover, conjugate diameters go into 
conjugate diameters, the centre being mapped into centre.

Under the affine transformation quadric surfaces pos­
sess analogous properties.

Since under the affine transformation real points go 
into real points and imaginary points into imaginary 
points, the affine transformation carries a real curve into 
a real curve, and an imaginary curve into an imaginary 
curve.

Obviously, if a figure is finite, then under the affine 
transformation its image is a finite figure; if a figure is 
infinite, then its image is also an infinite figure.

Taking into account the above mentioned properties 
of the affine transformation, we may conclude:

Under any affine transformation an ellipse is mapped 
into an ellipse, a hyperbola into hyperbola, a parabola 
into parabola, a pair of intersecting lines into a pair of 
intersecting lines, and a pair of parallel lines into a pair 
of parallel lines.

Analogous conclusions may be formulated for quadric 
surfaces.

Two figures are said to be affinely equivalent if under an 
affine transformation they can be mapped into each 
other.

All ellipses are affinely equivalent to a circle 
x2 +  y2 =  1.

All hyperbolas are affinely equivalent to an equilateral 
hyperbola

x2 — y2 = 1.
All parabolas are affinely equivalent to the parabola 

V =  *2-
Let us prove, for instance, the first assertion. Under 

the orthogonal transformation any ellipse can be carried



190 Analytical Geometry

into the ellipse
■ y2

a2 62 =  1 .

And this ellipse, by uniform compression (elongation) 
relative to the coordinate axes

is transformed into a circle
* '2 +  y '2 =  l.

When considering space, we may formulate similar 
assertions concerning the affine equivalence of quadric 
surfaces.

Finally, we are going to show that any affine transfor­
mation on the plane can be obtained by successive applica­
tion of three transformations: a uniform elongation {com­
pression) relative to two mutually perpendicular lines, and 
an orthogonal transformation.

The proof is rather simple. Under the affine transfor­
mation the circle

*2 +  y2 =  1
will go into an ellipse E' (Fig. 92). Let A ' and B' be its 
two successive vertices, O' its centre, A and B the cor­
responding points of the circle. The straight lines OA 
and OB are mutually perpendicular, since they are con­
jugate diameters of the circle (in fact, they correspond 
to the conjugate diameters O'A', O'B' of the ellipse).
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We now introduce two systems of coordinates: xy , 
taking the lines OA and OB for positive semi-axes x 
and y; and x 'y ', taking the lines 0 'A f, O'B' for [the posi­
tive semi-axes. In the coordinate system x y '  the ellipse Ef 
is specified by the equation

a x 2 +  Py'2 =  1.
There exists an orthogonal transformation which car­

ries the ellipse E
ax2 +  ffy2 =  1

into the ellipse E \  its vertices A and B being transformed 
into the vertices A' and B' of the ellipse E '.

Let us now consider the affine transformation which 
consists of a uniform elongation (compression) with res­
pect to the y-axis under which the point A goes into A , 
a uniform elongation (compression) relative to the #-axis 
under which the point B goes into B, and an orthogonal 
transformation under which the ellipse E is carried 
into E '. The affine transformation designed in such 
a way carries the points O, A, B into the points 0, A ' , B ' , 
like the given one, and, consequently, coincides with 
it (see Sec. 9-2). The assertion has been proved.

An analogous assertion may be formulated for an affine 
transformation in space. Namely, any affine transforma­
tion in space can be decomposed into three uniform com­
pressions {elongations) with respect to three mutually per­
pendicular directions, and an orthogonal transformation.

EXERCISES

1. Derive the properties of the conjugate diameters of 
an ellipse from the properties of diameters of a circle. 
Derive the properties of the diameters and diametral 
planes of an ellipsoid from the properties of the diameters 
apd diametral planes of a sphere.

2. An affine transformation in the plane is specified 
by the formulas

x' =  axx + b^y +  cl7 
y =  a2x +  b2y +
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As is shown, this transformation can be decomposed into 
a uniform elongation (compression) with respect to two 
mutually perpendicular directions and an orthogonal 
transformation. Find the coefficients of elongation (com­
pression).

Sec. 9-6. Projective Transformations
Affine transformations of figures are a particular case of 

more general, so-called projective transformations spec­
ified by the formulas

x » _ _  a l l x  g 12y  ~f~ a 13z +  a l4  

+  a 42y +  a 43Z +  a 44 ’

, _  a 21’Y +  g 22y  +  a 23Z ~l~^24 /  \

f l41x  +  fl42^ +  a 43Z + a 44 * 

y f  _  a 31X a S2U +  f l33Z +  q 34 1

rt4iX + a42H-a4gH-a44’ „
whose coefficients satisfy the only condition: 

au ai2 a13 a14
^ ^  a21 a2 2 # 2 3  a 24 Q

a S i  a 3 2  # 3 3  #34

#41 #4 2  #43  #44

These formulas define the transformation for any fig­
ure F which does not intersect the plane Ooo:

# 4 1 *  +  # 4 2  V  +  # 4 3 Z +  # 4 4  =  0*

In our further considerations we shall assume that 
the figure under transformation does not intersect with 
the plane CToo.

Obviously, this definition of the projective transformation 
is invariant with respect to the choice of the coordinate 
system.

A direct check may convince us that the successive 
application of two projective transformations is a projective 
transformation, the inverse of a projective transformation 
is again a projective transformation, the identity transfor­
mation is also a projective transformation.
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The projective transformation possesses many proper­
ties of the affine transformation. In particular, under 
projective transformations points lying on a straight 
line are mapped into points lying on a straight line.

The affine ratio of three points, generally speaking, is 
not preserved under the projective transformation, but 
in return, the (inharmonic ratio of four points on a straight 
line is preserved. This ratio is defined in the following 
way.

Suppose A, B, C, D are four points on a straight 
line, and e is a non-zero vector which is not perpendicular 
to the line. Then the anharmonic ratio of the points 
A, B, C, D (taken in the given succession) is defined 
as the number

(ABCD) = -^ 4 ^  
e-BC

e*AD
e-BD

Obviously, this definition is invariant with reference 
to the choice of the vector e. Therefore, taking the basis 
vector as e, we obtain

(ABCD) Xc XA • Xd XaK ' xc ~ x B * X D  —  X B
(*1*̂1

provided the a-axis is not perpendicular to the line AD.
If the y- and 2-axes are not perpendicular to the straight 

line, then analogous formulas are obtained with the 
coordinates y and z.

Let us show that the anharmonic ratio of the four points 
A, B, C, D on a straight line is preserved under the pro­
jective transformation.

Generally speaking, we may consider that the points 
A, B, C, D lie on the a;-axis (the line AD may be taken 
for the £-axis). Furthermore, we may consider that their 
images A \  B ' , C", D l also lie on the #-axis, since under 
the orthogonal transformation which, obviously, does 
not change the anharmonic ratio, they can be mapped 
onto the a>axis. And the coordinates xf of the points 
A ', B \  C' , D' are expressed in terms of the coordinates 
x of the points A, B, C, D by the formula

x» __
041̂ -1-̂ 44 ’

1 3 - 0 4 0 6
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and through a direct check we get sure that
X C  —  Z A  . X p  —  X A    X C ~ X A ' X D ’ ~ X A ’

Xq Xg Xj) Xg Xq, Xgt XD' XB'
i.e.

(.ABCD) =  {A'B'C’D'),
which was required to be proved.

Projective transformations in the plane are specified 
by the following formulas

, __ ai\X -f-aX2y 4~ 03.3
aZlx +  a^V +  3̂8 *

}r __ H\X a22y +  <̂23
a S lx H“ a 32lJ  +  a 39 9

a 2i

a 3i

a 12 a iS 

&22 2̂3 # 0
3̂2 aZ3

(***)

and possess similar properties.
The term “projective transformation” is linked with 

the following property ;of these transformations.
Any figure F’ contained in a plane a obtained from 

figure F of the same plane by means of a projective trans­
formation not reduced to the affine transformation can be 
obtained by central projecting from a centre S of figure F 
congruent to F.

Conversely, any figure obtained by central projecting can 
be obtained from F under a projective transformation.

We are going to prove only the second part of the 
assertion. Without loss of generality we may consider 
that the xy-plane is the plane a.

Let A (.x, z/, 0) be an arbitrary point of the figure F , 
A (Xj y, z) the corresponding point of F, S (x0, yQ, zQ) 
the centre of projecting, and A' (xf, y ', 0) the projection 
of A from the centre S on the xy-plane. Since the points 
S, A, and A ' are collinear, we get 

x '—x0 _  yr—y0 __ — z0 
x—x0 y—y0 z—z0 *

— z0x +  zx0 —z0y +  zy0
-  5 y -

W hence
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Since x, y, and 2 are linearly expressed in terms of x 
and y (figure F is obtained from F via an orthogonal trans­
formation), the expressions for x' and y' in terms of x 
and y will have the form (***) which means that the 
figure F' obtained by projecting can also be obtained 
by means of a projective transformation of the figure F.

EXERCISES

1. Show that a projective transformation in the plane 
is defined uniquely if it is specified for four points no 
three of which are collinear.

2. Express in terms of the anharmonic ratio (ABCD) 
the anharmonic ratios of these points taken in any other 
order, for instance, (ABCD), (BACD), and so on.

Sec. 9-7. Homogeneous Coordinates. 
Supplementing a Plane and a Space 

with Elements at Infinity.
In a plane, the homogeneous coordinates of a point, 

whose Cartesian coordinates are x and y, are any three 
numbers xx, x2, x3 (not all equal to zero) for which

The homogeneous coordinates of a point are defined not 
uniquely. Namely, if xx, x2, x3 are the homogeneous 
coordinates of a point, then pxv px2, px3 (p =£ 0) will 
also be the homogeneous coordinates of this point.

Since in Cartesian coordinates any straight line is spec­
ified by the equation

«i* +  azy + a3 = 0 (aj +  a j# 0 )
and any equation of this form is the equation of a straight 
line, then any straight line is specified in homogeneous 
coordinates by the equation

01*1 +  02*2 +  asx3 = 0 ( a J + a ^ O )
and any such equation is the equation of a straight line.
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For any point (x , y) in a plane it is obviously possible 
to find three numbers which will be its homogeneous coor­
dinates, for instance, x, y, 1. The converse is, generally 
speaking, false. Namely, for the three points xL, x2, x3, 
where x3 =  0, it is impossible to indicate a point for 
which these numbers would be its homogeneous coordi­
nates. This circumstance causes many inconveniences 
when considering a number of problems concerning, in 
particular, projective transformations of figures. In 
connection with this, we shall supplement the plane 
with new elements, namely, infinite points and a straight 
line at infinity.

Hence, we shall consider that to the three numbers 
xv x2, x3 there corresponds a point at infinity if x3 =  0. 
The locus of infinite points will be called a straight line 
at infinity.

In  a plane extended in such a way any equation of the 
form

is the equation of a straight line. I f  ax — a2 =  0, then the 
line is at infinity.

In  an extended plane any two straight lines intersect, 
since the system of two linear equations

always has a non-trivial solution (xv  x2, x3 are not all 
equal to zero). In particular, two parallel lines intersect 
in a point at infinity. Indeed, if the straight lines (*) 
are parallel, then

Multiplying the second equation of the system (*) by 
X and subtracting it from the first equation, we get 
(a3 — Xb3) x3 =  0, whence x3 =  0.

The projective transformation of figures introduced in 
the preceding section can be continued on an extended 
plane. Namely, let us consider on an extended plane

â x̂  -f* a2x2 d- ^3̂ 3 ^

(*)
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a transformation specified by the formulas

X i —  a i l% l  a i2X 2 “h  ^ 1 3 ^ 3 1 

X2 =  a2\Xi H" a22X2 ~\~ a23X3i 
X3 =  3̂1̂ 1 +  3̂2̂ 2 H“ 3̂3*̂ 3 5

ai 1 ai2 a13
a2i a22 a23
a3i ^32 a33

¥ * 0.

On a non-extended plane this transformation coincides 
with the projective transformation introduced before. 
Indeed, on a non-extended plane

#3=̂ =0.

Dividing the first two formulas by the third one term- 
wise, we get

_  flii^+gi2y + ai3 
a 31X  H“ a 32>y “h  fl33 ’ 

j  f a 2 l X ~\~a 22y  H ~ g 23 

a3lrr+ a32yH“a33 *
For a space the homogeneous coordinates xx, x2, x3, x4 

of a point are introduced analogously as the four numbers 
related with the Cartesian coordinates as follows

In just the same way a space is also supplemented with 
elements at infinity: infinite points, infinite straight lines, 
and an infinite plane. And it turns out that in a space 
supplemented with elements at infinity any equation

axxx +  a2x2 +  a3x3 -f- a4£4 =  0

specifies a plane (an infinite one if a1 =  a2 =  a3 =  0), 
any two independent equations

“I- ct2x2 -(■ a3x3 I a4x 4 0,
&i#i "I" b2x2 -|- b3x3 -|- bAx4 ~  0

define a straight line ^possibly at infinity if —  —
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The projective transformations defined in the preceding 
section are spread to an extended space and are specified 
in homogeneous coordinates by the formulas

X\ ^ll4l "T 1̂2*̂ 2 +  1̂3*̂ 3 "T ̂ 14^4’
=  ^2l4L +  ^22^2 2̂3*̂ 3 "T ^24^4»

X 3 —  a 3 l X \  H“ ^32^ 2 +  U33^ 3 +  « 34^ 4 ,

x 4  ^ 41^ 1 ~F" ^42*^2 +  ^ 4 3 * ^ 3  “1“ &44^4»

A =

a l i  a 12 a i3 #14 

#2  i #22 #23 #24

#31 #32 a 33 #34
=9̂ 0.

#41 #42 #43 #44

EXERCISES

1. Derive the formulas for the projective transforma­
tion of an extended plane which carries the straight lines 
xt =  0, #2 =  0, x3 =  0 into the straight lines

CL-̂X-X T  &XX2 4 ” ^lx 3 — 0 ,
a2xi 4- fc2z2 4- c2x3 =  0,
#3̂ 1 +  &3̂ 2 +  #3*3 =  0.

2. Find the coordinates of the point of intersection of 
the straight lines

— ̂ OCj ^2̂ 4—*̂4̂2 ^3̂ 4 — ̂ 4̂ 3
*i A'2 k3 ’

1̂̂ 4 4̂̂ 1 _ 2̂̂ 4 x4$2   3̂̂ 4 4̂̂ 3
k\ k% A*3

Sec. 9-8. The Projective Transformations 
of Quadric Curves and Surfaces

In homogeneous coordinates a quadric curve is, obvi­
ously, specified by the equation

+  2aizx ixz +  • • • +  033̂ 1 =  0, (*)
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which is obtained from its equation in Cartesian coordi­
nates

anxa +  2a12xy +  . . . +  a33 =  0 (**)

by replacing x by —  and y by — .#3 XZ
Let us supplement a plane with infinite elements and 

continue the curve specified by the equation (*) on the 
extended plane by joining to it all ideal points (if any) 
which satisfy the equation (*).

Let us show that on an extended plane a quadric curve is 
protectively equivalent to one of the following simple curves:

x\ +  xl +  xl =  o,
X1--X2~\~ X3 = 0>

+  A  =  o, 
xl ~  =  0> 

* i= o ,

(***)

i.e. can be mapped by a projective transformation into 
one of them.

Considering the reduction of a quadric curve to the 
canonical form (Sec. 3-8), we showed that there exists 
a system of coordinates x'y' in which the equation of the 
curve (**) takes one of the following forms:

ax 2 +  p y 2 +  y =  0, 
a* '2 +  p /*  =  0, 
cw;/2 +  py' = 0 , 

x*2 =  0.
Analytically it means that we may introduce into the 

equation (**) new variables x , y' related with x and y 
by the formulas of the form

x' = anx +  a12y +  a 13,
y =  a 21x + a 22y +  a 23,

so that the equation (**) will take one of the above 
forms.
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Whence it follows that if the projective transformation
X 'l =  “ ll^l +  <*12̂ 2 +  & 1 3 X 3 ,

X g  =  ~f~ 0̂ 22̂ 2 "4“ 2̂3*̂ 3*
X3 =  #3*

is applied to the quadric curve (*), then we shall obtain 
one of the following curves:

ocx\ +  $x\ +  yxl — 0, 
ax\ +  P ^ ^ O , 

ax\ -f §x2xz =  0,
*J =  0.

As to these curves, they are readily carried into the 
curves (***) by a simple projective transformation. 
For example, in the first case we have to apply the pro­
jective transformation

x'i = V  \a \X i, 4  =  V IP I^2> x'3= Y \ y \ x 3\ 
in the second

x[ =  Y  | a  | xt\ x '2 '= - ~\f [ |3 | Xoj x'3 =  x3;
in the third

x2= x-z± ^ V M \  X3= x- ^ V W \ -

A similar assertion may be proved for quadric surfaces 
in a space supplemented with infinite elements. Namely, 
any quadric surface is protectively equivalejit to one of the 
following surfaces J§|

x \  +  x l +  x \ - \ -  x \ = 0 ,  
x \ +  x \  +  x \  — x \  =  0, 
x \ - \ -  x \  — x \ — x l  =  O? 

x \  + ^ 2  +  x \  - -  0, 
x\ + x l~ x l  = 0, 

x \ +  x \  =  0 ,

x\ = 0.
The proof is analogous to that given for curves.
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EXERCISE

1. Find the projective transformations which map the 
curves

(a^i +  a2x2 +  a3xg)2 ±  ( 6 ^  +  &2z2 +  b3x3)* = 0,
(ciiX1 - ( -  CL̂ X2  - | -  ^ 3 ^ 3 )  ( 6 1 ^ 1  “ 1“  b<yX<i - f -  6 3 ^ 3 )  =  0 .

into one of the canonical forms (***).

Sec, 9-9. The Pole and PoJar
Introducing homogeneous coordinates into the for­

mula (**) of Sec. 9-6 for the anharmonic ratio, we get

(ABCD) =
x l A X 1C X 1 A x l D

x 4 A X 4 C x 4 A x 4 D

X 1 B X 1C x l B x l D

x 4 B x 4 C x 4 B x 4 D

(*)

and respectively two other formulas with xx replaced 
by x2 or x3.

The anharmonic ratio of the points on a straight line 
in a space supplemented by infinite elements is defined 
by the formula (*). Independent of the proof given in 
Sec. 9-6, we can show that the anharmonic ratio thus 
defined is preserved under the projective transformation. 
We leave this to the student.

Suppose we have a quadric surface
4

2F=== ̂ ] Q’ijXiXj 0
i, .7 =  1

and a point A ( x [ ,  x 2, x '3, x [ ) ,  not lying on the surface. 
Through the point A we draw an arbitrary straight line 
to intersect the surface (**) at points C and D . We 
then construct a point 5 , harmonically separating the 
points C and D from the point A, i.e. such that (ABCD) =  
=  —1.

The locus of the points thus constructed is called the 
polar of the point A. The point A is called the pole with 
reference to the polar.



202 Analytical Geometry

We are going to form the equation of the polar. Let 
xx, x 3 i #4 be the homogeneous coordinates of the
point B. The coordinates x t of any point of the line AB, 
different from A, may be represented in the form

=  (£ =  1, 2, 3, 4). (***)

Indeed, the straight line AB  is specified by two linear 
equations:

2  a t X i  =  0 ,  2  h x i  =  0 .

Since the rank of the matrix
/  Qt̂  CL2 CL3 CL%\

\b t b2 b3 b±)
is equal to two (the equations are independent), any solu­
tion of this system represents a linear combination of two 
independent variables:

x i =  iix i -\-vxi (£ =  1, 2, 3, 4).

If the point is different from A , then p =#= 0 and the coor­
dinates x x can be divided by p to obtain the above repre­
sentation.

We may convince ourselves by a direct check that the 
anharmonic ratio of four points A , 5 , XA +  5 , p̂ 4 +  
+  B (£A +  B is a point with the coordinates +  x'i)

(A, B , XA + B, M  +  *) =  -~ .r
Whence it follows that the points C and D of inter­

section of the line AB  with the quadric surface allows the 
representations

C = XA +  5 , D = + B
Substituting the coordinates of the points C and D 

into the equation of the surface, we get
2  ai} (±  Xxi 4- x’i) (±  Xx} +  x'j) =
i ,  3

=  X2 2  UijXiXj ±  2X 2  S  —  0 .
i. 3 i, 3 if 3
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Whence it follows:

2  — 0. 
i, i

which is the equation of the polar. Hence, the polar rep­
resents a plane.

Let us here note two important properties of the polar:
1. The polar of any point B belonging to the polar of 

point A passes through A.
2. I f  a point A moves along a straight line, then its 

polar turns about some straight line.
Indeed, the equation of the polar of the point

B (A)
y i Q,ijxixj == 0

i, 3

is satisfied by the coordi­
nates of the point A , since

71 d i j X i X j  =  73 & i j x i x j
i ,  j  i, j

( a i j  =  &ji ) i

and
2  aijx'x'j =  0,
i, 3

since B lies on the polar Tig. 98.
of the point A.

Suppose a point A moves in a straight line joining the 
points A ' (xi) and A " (A). The polar of any point of this 
line will be

73 (M&J +  X" xj )  =  0,
t, 3

or

V  73 a i j x ix 3 +  ^  73 G i j Xi X j  =  0.
I, 3 iy 3

Whence it is seen that the polar rotates about a straight 
line specified by the equations

73 ^ijx ix j == 0, 73 &ijx ixj
iy 3 iy 3
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The polar of the point A (#', x2, x'3) with reference to 
a quadric curve is defined analogously (Fig. 93). It 
represents a straight line and is specified by the equation

3

2  aijZ&j =  0, it j=l
if the curve is specified by the equation

3

2  aijxixj = 0. 
i, j —i

EXERCISES

1. Show that point C which together with an infinite 
point of the straight line AB  harmonically separates the 
points A and B, is the mid-point of the line segment A B .

2. The complete quadrilateral is defined as a figure 
consisting of four points, no three of which are collinear, 
and six straight lines joining them pairwise (Fig. 94). 
Show that the pair of points G, H  harmonically separates 
the pair of points E , F. (Make use of Exercise 1 and of 
the invariance of the anharmonic ratio under the pro­
jective transformation).

3. Justify the following method of constructing tan­
gent lines to a conic section from an arbitrary point S 
(Fig. 95). Lines 1 and 2 are drawn arbitrarily, the rest 
of the lines in the order of numbers according to the 
figure.
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4. How to draw a tangent line to a conic section at 
a given point using only a ruler?

5. Given a conic section and a straight lino. How to 
construct the pole of the straight line with respect to 
the given conic section using only a ruler?

6. Let k be a conic section. We take an arbitrary straight 
line /  and a point A on it. Construct the polar g of the

point A with respect to k. It will intersect /  at point B. 
The polar h of the point B intersects the line g at point C 
and passes through the point A. In such a way we have 
constructed a triangle ABC whose sides are the polars 
of opposite vertices. This triangle is called a self-polar 
triangle.

Show that if the sides of the self-polar triangle are 
taken for the lines x1 = 0, x2 =  0, and x3 =  0, then 
the equation of the conic section k will have the form

<xxl +  $xl +  ya;J =  0.

7. Derive the properties of diameters and diametral 
planes from the properties of poles and polars.

8. Show that the polar of the focus of a conic section 
is the directrix.



206 Analytical Geomeirtj

Sec, 9-10. Tangential Coordinates
Any straight line contained in an extended plane may 

be uniquely associated with the ratio of three numbers 
ux : u2 : u3 which are the coefficients of its equation in 
homogeneous coordinates:

uxxx + u2x2 + u3x3 = 0. (*)
The numbers uly u2, uz will be called the homogeneous 
coordinates of a straight line. The homogeneous coordi­
nates of a straight line are defined not uniquely. Namely, 
if ux, u2, u3 are the homogeneous coordinates of a 
straight line, then pux, pn2, pu3 (p =#= 0) will also be 
homogeneous coordinates of this line.

Let us find out the geometrical meaning of the equation
u&\ +  u2x\ +  u3x\ =  0, (**)

in which uXl n2, u3 are variables, and x\, x\, x\ are fixed 
quantities.

To each solution u\ , u\, of the equation (**) there 
corresponds a straight line

passing through the point (,xJ, x\, a;g). Conversely, the 
coordinates of any straight line passing through this 
point satisfy the equation (**). Hence, the equation 
(**) is satisfied by the coordinates of the straight lines 
forming a pencil with the centre x\, £3), and only 
by them. This is why the equation (**) is called the 
equation of a pencil.

In case of a space we proceed in an analogous way, 
introducing the homogeneous coordinates of a plane 
ul7 z/2, u3, uA as the coefficients of its equation in homo­
geneous coordinates.

For fixed x\ and variable ut the equation
U ix[ -(- U2x2 +  U3X3 +  ukx\ =  0

specifies a bundle of planes with centre (#$).
The equation

cp (uu u2, u3) =  0,
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which is satisfied by the homogeneous coordinates of 
tangent lines to a curve and only by them is called the 
tangential equation of the curve. Let us form the tan­
gential equation of a non-degenerate quadric curve.

In Sec. 8-8 we obtained the equation of a tangent line 
to a quadric curve in Cartesian coordinates. Passing 
over to homogeneous coordinates, this equation is reduced 
to the following symmetric form:

+  x2Fx  ̂+  x3Fx>z =  0,
where

Fx  ̂= anxx -J- a 12#2 1̂3*̂ 3 *

Fx  ̂=  <̂2iXi +  a22X2 a23xz »
Fx's =  a 3 i x x “h a32x 2 “1“ a33x s •

Whence it follows that the homogeneous coordinates 
of the tangent line at point (x[, xv x'3) are

U\ ~  F u ^ ~  Fx', u3 =  Fx .̂

Solving these equations with respect to x[, x'2, xz (the 
determinant of the system is non-zero, since the curve is 
non-degenerate), we get for them the linear expressions 
in terms of ux, m2» us• Since the point {x\) lies on the 
curve, its coordinates satisfy the equation of the curve. 
Substituting x\ expressed in terms of ut into the equation 
of the curve, we get the tangential equation of the curve. 
Obviously, it will be of the second degree and homoge­
neous with respect to the coordinates ut\

2<J> (u,, u2l u3) =  bn u\ +  2b12uiu2 +  • • • +  b33u\ =  0. (***)
In connection with this a quadric curve is said to be a 
curve of the second class.

Let us find out how to understand geometrically the 
totality of straight lines whose coordinates satisfy an ar­
bitrary equation of the form (***). As it has been shown, 
it may be a totality of tangent lines to a non-degenerate 
quadric curve. But this does not exhaust all the pos­
sibilities. For instance, the equation

(ajUj +  a 2u2 +  a 3w3)) ( P ^  +  p2w2 +  M s) =  0
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specifies two pencils of straight lines with centres (a*) 
and (P*).

In Sec. 9-8 it was shown that any quadric curve
3

2l =z 0i, i=l
can be carried by a projective transformation into the 
curve

B1X1 +  e2X2 “h =  0,
where e* are numbers equal to +1 , —1, or 0. Analyti­
cally it means that 2  auxixs can always be represented 
in the form

2 e* ( 2i = 1 ;=1
the determinant formed from a tj being non-zero.

Whence it follows that the equation (***) can always 
be reduced to the form

3 _3̂

2  ei ( 2  K i j U j ) 2  =  0.2=1 j— 1
If all e* are non-zero, then this equation specifies 

tangent lines to a non-degenerate quadric curve. If one 
of the coefficients e*, say e3, is equal to zero, then the 
equation
ex (auwx +  a 12w2 +  a13u3)2 +

+  e2 (a21wx +  a 22u2 +  a 23w3)2 =  0
may be represented in the form of a product of two linear 
(with respect to u t) factors (either real or complex):
(Pll“l "b Pl2W2 “h PlS^) ($2lUl "h $22U2 +  p23W3) — 0,
and the equation specifies two different pencils of straight 
lines. If both coefficients e* are zero, say e2 and e3, then 
the two pencils merge into one:

K r t  +  «i2^2 +  ais^s)2 =  0.
Quadric surfaces in space are considered in just a sim­

ilar way. We confine ourselves here to formulating the 
results obtained, omitting the work.
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The tangential equation of a non-degenerate quadric 
surface lias the form

4
2  aijUiUj^Q.

U j—i
The totality of planes whose homogeneous coordinates 

satisfy an arbitrary equation of the form
4
2 atjUiUj^O, 

i, 7=1
consists either of tangent planes to a non-degenerate 
quadric surfaces, or of planes passing through the tan­
gent lines to a conic section, or of two bundles of planes 
which, in particular, may merge.

, In conclusion, let us consider the so-called correlation. 
In an extended plane this is a linear transformation 
which carries a figure F consisting of points into a figure F ' 
consisting of straight lines so that the coordinates of a 
straight line belonging to the figure F ' are expressed in 
terms of coordinates of the corresponding point of the 
figure F according to the formulas

Ul — 1̂1*̂ 1 +  ̂ 12̂ 2 +  l̂3^3i
w2 =  ^21^1 “b a 22X2 “b a 23X 3,

a i i  a i2 a i3 

#21 #22 a23 0 .

Us  — #31 "1“ #32^2 “b  #33^3* #31 #32 #33

This transformation allows a simple geometrical 
interpretation if — ajt. Namely, it consists in asso­
ciating the point x2, x3) with its polar with reference 
to a quadric curve specified by the equation

2  atjXiXj =  0.

Whence it follows that points lying on a straight line 
go into straight lines passing through the point. This 
principal property of correlation takes place in the 
general case (atj =£ aji) as well.

Correlation in space is defined analogously. Each 
point A of the figure F is associated with the plane a  of 
the figure Fr whose coordinates are linearly expressed in
1 4 - 0 4 0 6
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terms of the coordinates of the point A. Correlation in 
space may be represented through the correspondence of 
poles and polars with reference to a quadric surface.

EXERCISES

1. The anharmonic ratio of four straight lines of a pencil 
is defined as an anharmonic ratio of four points of inter­

section of these lines with 
an arbitrary straight line not 
passing through the centre 
of the pencil. Show that this 
definition is invariant with 
respect to the secant straight 
line, and find the expres­
sion of the anharmonic ratio 
in terms of the homogeneous 
coordinates of the straight 
lines.

Show, in particular, that 
the anharmonic ratio of the

straight lines (a,), (ivt), {ut +  ta;*), and (ut +  pi;*) is 
equal to X/p.

Show that under correlation the anharmonic ratio of 
four points of the figure F is equal to that of the corre­
sponding straight lines (planes) belonging to the figure F'.

2. With the aid of Pascal’s theorem (see Exercise 9 
to Sec. 3-8) prove the following Brianchon’s theorem: 
If a hexagon is circumscribed about a conic section, then 
the lines joining pairs of opposite vertices are concurrent 
(Fig. 96).



Answers to the Exercises, 
Hints and Solutions

Chapter 1
Sec 1-1

1. (a) The points of the 2z/-plane for which | x | =  a lie on two 
straight lines parallel to the #-axis at a distance a from it. (b) The 
points for which | x \ — \ y | lie on the bisectors of the quadrants.

2. (a) The points of the 2?/-plane for which | x | <  a lie within 
the band between the straight lines parallel to the y-axis and situ­
ated at a distance a from it. (b) The points for which | x | <  ay 
| y | <  & lie inside a rectangle with the centre at the origin and 
sides 2a and 2b parallel to the x- and y-axes.

3. The coordinates of the point symmetrical to the point 
A (2, y) about the 2-axis will be x and —y; the coordinates of the 
point symmetrical to the point A (x, y) about the y-axis will be 
—2 , y; and the coordinates of the point symmetrical to the point 
A (2, y) about the origin will be —2, — y.

4. The coordinates of the point symmetrical to the point 
A (2 , y) about the bisector of the first (second) quadrant will be
V> x (—Vi *)•

5. If the y-axis is taken for the 2-axis and the 2-axis for the 
y-axis, then the point A (2 , y) will have the abscissa y and the 
ordinate 2.

6. If the origin is displaced to the point A (20, ^0) without 
changing the direction of the coordinate axes, then the point 
A (2, y) will have the abscissa 2 — x0 and ordinate y — y0.

7. If the diagonals of a square whose side is equal to 2a are 
taken for the coordinate axes, then the abscissa and ordinate of 
the mid-points of the sides of the square will be equal to ±  a/}f2.  
The sign depends on the side taken. Four possible combinations 
of signs correspond to the four sides of the square.

8. For a point to be situated between two other points it is 
necessary that its abscissa (or ordinate) be enclosed between the 
abscissas (ordinates) of the two other points.

Sec. 1-2
1. Equating the distances of the required point (2, 0) from the 

two given points, we find the equation for 2:
(®i — *)* +  (Vi — 0)* =  (x2 — *)* +  (i/2 — 0)2,

14*
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or
2 (x2 — x j  x -= j/1 — */? +  j?1 — x \.

Whence we lind x. In the particular case we have: 2 =  (52 — a2)/2b.
2. Find the distance d between the points A and B. The third 

vertex (C) of the triangle is located at a distance d from the vertices 
A and B. The coordinates x, y of the vertex C are found from the 
two equations thus obtained. The problem lias two solutions which 
correspond to the two triangles situated symmetrically about the 
straight line AB.

3. Knowing the coordinates of the vertices A and B of the 
square, we find the side of the square a as the distance between A 
and B . The third vertex C is determined from the condition that 
it is situated at a distance a from B and at a distance a / 2  (the 
diagonal of the square) from A . The fourth vertex D is determined 
from the condition that it is found at a distance a from A and C 
and is different from B. The problem has two solutions.

4. If A (x1, 2/1), B (xz, tj2), and C (x3, y3) are the vertices of a 
right-angled triangle with the right angle (7, then the condition 
will be

This condition represents a coordinate notation of the Pythagorean 
theorem for the triangle ABC.

5. If -4 (#1, 2/1), B (x2, y2), and C (x3i y3) are the vertices of 
the triangle, then the condition that the angle A of the triangle 
exceeds the angle B will be expressed as follows

This follows from the fact that in any triangle the greater side is 
opposite the greater angle and, conversely, the greater angle is 
opposite the greater side.

6. Find the centre O of the circle circumscribed about the 
triangle ABC and compare the radius R of this circle with the 
distance from the centre to the vertex D. The quadrilateral will 
be inscribed in the circle if OD =  R. The quadrilateral will not 
be inscribed in the circle if OD R.

7. This is the “inequality of a triangle” for the points with the 
coordinates (a, b), (a1? Zq), (aa» b2).

1. Let for definiteness (xl5 y j  and (#8, y3) be the opposite ver­
tices of the parallelogram. Then the coordinates of the centre of 
the parallelogram will be

(xs — x2)2 +  (y* — y2)2 +  (*8 — *i)2 +  (.Vs — yi)2 =
=  (x2 — x2)2 - f  (y2 — iji)2.

(* s  —  x z)2 +  (y3 —  y 2)2 >  (*3  —  xi)2 +  (va — Vi)2-

Sec. 1-3
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The coordinates x, y of the fourth vertex are found from the equa­
tions '

2. The point of intersection of the medians divides each median 
in the ratio 2:1, as measured from the vertex. The coordinates of 
the point of intersection of the medians will be

3. The mid-points of the sides of the triangle and any of its 
vertices taken together are the vertices of a parallelogram. There­
fore the problem is reduced to Problem 1.

4. x̂  =  (1 Xq -J- Xxf, V \ ~  Vo tyii i =  3.

5. To solve this problem make use of the geometrical reasoning 
considered in connection with dividing a line segment in a given 
ratio (see Sec. 1-3).

6. Let (xx, jfx) and (x2l y%) be the end-points of one line segment, 
and (&3, y3) and (x4l y4) the end-points of the other segment. If 
the segments intersect, then the coordinates of the point of inter­
section allow two methods of representation:

The segments intersect if the solutions of this system with respect 
to t and t f satisfy the conditions 0 ^  t, t' <  1.

7. Use the method of mathematical induction.

1. (1) If a =  0, the centre of the circle lies on the y-axis; (2) if 
6 =  0, the centre of the circle lies on the x-axis; (3) if c =  0, the 
circle passes through the origin; (4) if a =  b =  0, the centre of 
the circle is at the origin; (5) if a =  0 and c — 0, the circle touches 
the z-axis at the origin; (6) if b =  0 and c =  0 the circle touches 
the y-axis at the origin.

2. Pay attention to the fact that (x — a)2 -|- (y — b)2 is the 
square of the distance of the point (#, y) from the centre of the 
circle, and use the Pythagorean theorem as applied to the right- 
angled triangle in which one leg is a tangent to the circle, the 
other leg being the radius of the circle.

3. Make use of the fact that the power for external points is 
equal to the square of the length of the tangent, and for internal 
points to the square (taken with the minus sign) of half the length 
of the chord passing through the given point perpendicular to the 
diameter joining this point to the centre of the circle.

x — +  * 2  +  x3 Tr __ Vi +  Vz +  Vz 
3 1  ̂ 3

(1  t)  X x - j -  t X 2 ■ (1  t  ) X 3 - j -  t  X 4j

(1 — t) Vl -|- 2 = (1 — O Vz “1"  ̂Z/4‘

Sec. 1-4
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4. Suppose (x, y) is a point of the locus. Its distances from 
F1 and F2 are respectively equal to

/ ( x - c ) M - .v 2, V ( x + .c ) 2 +  y*.

The equation of the locus of points:

Y  { x - c Y  +  y* +  / ( x  +  c)H-J/2 =  2a.
To reduce this equation to the form

we have to transpose the first radical to the right-hand side of the 
equation and to square both members. We get

(x-\- c)2 -\-y2 — ka2—4a Y (x — c)2 +  .V2 +  (z — c)2-\-y2.
Leaving the radical in the right-hand member of the equation and 
transposing the remaining terms to the left-hand side, after obvious 
simplifications we get

cx — a2 =  —a Y ( x — c)2-\-y2.
Squaring both members, after simple transformations we obtain

a4 — a2c2 =  ahj2 -f- (fl2 — c2) #2,
whence

x2
a2 a2— c2 =  b2.

5. The problem is solved analogously to the previous one, the 
initial equation being

j / ( * - c ) 2 +  j/2- / ( x + c ) 2+ ! /2=  ±  2a.
6. The equation of the locus:

Y  (y—p)2+ ^ = y .
After squaring and simplifications the equation takes the form

- 2 p y  +  p 2 +  * 2 =  o.

Sec. 1-5

1. The equation of the curve in implicit form:
(x — a)2 -)-(?/ — b)2 =  R2.

Whence it is seen that a and b are the coordinates of the centre, and 
R is the radius.
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2. The equations of the curve: 

Xa cos t , [la sin t.

For X =  jLt the curve is a circle.
3. The equations of the curve:

x =  a cos t h sin t, y — b sin t h cos

where a, 6, h, and the parameter t have the values indicated in 
Fig. 14. To get these equations represent the abscissa x and ordinate 
y of the point on the curve in the form of an^algebraic sum of the 
lengths of the projections of the links of the polygonal line OABC.

4. The equations of the curve:

x =  l ---- sin , V =  R ( l —cos“j f )  (a cycloid)

The problem is solved like the preceding one. Here the polygonal 
line is OTSA .

5. Solving the equations

ax2 +  6xz/ +  c^2 +  dx-|-^== 0, t =

with respect to x and y, we get the equations of the curve in para­
metric form:

d-\-ei _ dt-\~et2
X =  ~  a + b t  +  ct* ’ V~  ~a- \-bi  +  ct2 '

Sec. 1-6

1. The points of intersection of the circle with the x-axis are 
obtained by solving the system of equations

x2 +  y2 +  ^ax +  2by -f- c =  0, y =  0.
The circle does not intersect the x-axis if the roots of the equation

x2 -f- 2ax -f- c =  0
are imaginary. The circle intersects the x-axis at two points if the 
roots of this equation are real and different. The circle touches the 
x-axis if the roots coincide.

2. The circles intersect at two points if >  d, where
and R 2 are the radii of the circles and d is the distance between

their centres. i?1? R%, and d can be expressed in terms of the coef­
ficients of the equations of the circles. One can also find these 
conditions by solving the system formed from the equations of the 
given circles.
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3. The points ol‘ intersection oi‘ the circles:

4. The point ol* intersection of the curves: (1, 0).
5. If the point (x, y) satisfies the equations of the curves, then 

the points (—x, y) and (x, —y) which are symmetrical to it about 
the coordinate axes also satisfy these equations. Therefore the 
points of intersection are situated symmetrically about the coor­
dinate axes.

Chapter 2
Sec. 2-1

1. The equation may be written in an equivalent way
(ax -f  by -f- c) -{-by — c) — 0.

It is satisfied only by the points of the straight lines ax -f- by -\- 
+  c =  0, ax by — c — 0 and only by them.

2. See Sec. 1-6.
3. Suppose the straight lines intersect at some point (a?x, yx). 

Then
axi byi -f- c =  0, Ax1 -f- Bijy C =  0.

Multiplying the first equation by A , and the second by a and 
subtracting termwise, we get Ac — Ca =  0. This equation together 
with A b — Ba =  0 yield the following proportion

a _  b _  cK 
~A ~~B ~~C ’

from which it follows that both equations specify one and the 
same, but not different straight lines.

4. The radical axis of the circles
+  U2 +  aix +  h y  4- ci =  *2 +  lf  +  a2x -h b2y +  Co =  0

is represented by the equation
(ax — a2) x +  (bx — b2) y A- ci — c% =  0.

See Exercise 3 of Sec. 1-4.
5. If (xx, yx) and (.r2, z/2) are the two given points, then the 

uation of the locus will be
(x — a:x)2 +  (y — yx)2 — (x — .r2)2 — (// — y2)2 =  a.

This equation is linear with respect to x, y.
6. The point y') lies on the ray passing through the point

(s, y) and V * /2+ ^ '2 * y rx2 y2 B 21
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7. Let
x2 +  V2 +  ax +  by +  c =  0 

be the equation of the given circle. Dividing it by x2 -f- i/2, we get

ax by ^  _ c_ =
^  #2+[/2̂ £ 2 +  Z/2 1 ^2+*/2

Noting that
, R2x , R2y , 2 ,

* “■*• +  ?* ’ V “ *• +  »*• * 'ry  ““ *• +  »*’ 
we obtain the equation of the transformed curve:

'+ -& * ' + i k y' + -&
In the general case this is the equation of a circle. If c =  0, i.e. 
if the initial circle passes through the origin (the centre of inver­
sion), a straight line is obtained.

8. The equation ax +  by -f- c =  0 has an equivalent form

2 (x„ — ) x +  2 (p0 — yo) V +  (•»o2+  .Vo2— 4  — Fo) =
when x'o and y'0 are the coordinates of the point A*.  From the 
equivalence of the above equations there follows the proportion

2 (s0 — 3-o)_ 2(y0—y ’0) _  x^ +  y'o2—x\ — y%
a b c

Whence we find x'0 and y{v
9. The fact that the determinant is equal to zero guarantees 

the existence of a non-trivial solution of the system

ax1 +  by1 +  c =  §, "j 
ax2-\~ by2-\-c =  0, > 
ax3 +  by3 +  c =  0 J

with respect to a, b, c (a and 6 cannot be both equal to zero). The 
straight line passing through the given points has the equation 
ax -[- by c =  0.

Sec. 2-2

1. The straight line intersects the positive semi-axis x if da  <  
< 0 .  It intersects the negative semi-ax is .r if da  > 0 .

2. The straight line docs not intersect the first quadrant if 
a, 6, c ^  0, or b, c ^  0.

3. If the point (x, y) satisfies the first equation, then the point 
(x, —y) which is symmetrical to it about the a:-axis satisfies the 
second equation.
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4. If the point (x, y) satisfies the first equation, then the point 
(—z, —y) which is symmetrical to it about the origin satisfies the 
second equation.

5. The straight line is parallel to the ar-axis if X satisfies the
condition a -)- =  0. The straight line passes through the origin
if Xct =  0.

6. The straight line, together with the coordinate axes, bound 
an isosceles triangle if | a | =  | b |.

7. c
a and are the legs of the right-angled triangle.

8. The tangents are given by the equation of the form x — X =  0 
(or y — X =  0). The quantity X is determined by the condition 
that the equation X2 y2 -(- 2a-X 4- %by =  0 (x2 -|- X2 - f  2ax -)- 

2bX =  0, respectively) has the unique solution with respect 
to y Or).

Sec. 2-3

1. Use the formula (*) given in Sec. 2-3.
2. The straight line forms with the a;-axis an angle of n/2 — a.
3. If the side of the triangle lies on the s-axis and its altitude 

on the positive semi-axis y, then the equations of its sides will be

0 =  0, !/ =  -y^  +x y" 3 ,  y =  X^— x Y  3-

4. This is an isosceles triangle situated symmetrically about 
the bisector of the first quadrant.

5. Compare the angles formed by the straight lines with the 
ar-axis. The required condition is alb =  —a jb v

6. Pass over to specifying the straight line by the equation 
(x — b) c — (y — d) a =  0.

7. Pass over to specifying the straight lines by the equations 
in implicit form.

8. The vertices of the quadrilateral are situated at the point
(+ - ,(> )  , (o, ± 4 ) .

Sec. 2-4

1. The straight lines are given by the equations of the form

—— —+-| -  =  1> l«| =  |&|> |c| =  |d |.

For these lines cither ad — be =  0 , or ac -f- bd =  0 .
2. Pass over to the implicit form of equations for the given

lines. The parallelism condition is a1$2 — Pi«2 =  0- The perpen­
dicularity condition: a xa 2 -f- =  0.

3. The parallelism condition: aa -j- by — 0. The perpendicu­
larity condition: ay — ba =  0.
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4. In the case of parallelism the parameter X is determined from 
the condition (ax +  a M  & — (bx b2X) a =  0. In the case of 
perpendicularity from the condition (ax -f- a2X) a +  +  b2X) b =
= 0.

Sec. 2-5

1. When substituting the coordinates of the given point and 
the coordinates of any of the vertices in the left-hand side of the 
equation of the side of the triangle opposite this vertex, we must 
get expressions with the same sign. If at least for one vertex these 
expressions are of different signs, then it means that the point 
is situated outside the triangle.

2. We have
flg+fry +  ci ax-\-by-\-c2 __ |c i — c2 \

j/a2 +  62 / a 2+ 't2 =  / a 2 +  62 '
If A (xy y) is a point on one of the straight lines, then the left- 
hand side of the identity represents the distance of this point 
from the other line, i.e. the distance between the lines.

3. The straight lines are represented by equations of the form
ax by c' =  0;

c' is determined from the equality | c — cf | =  6 Y  a2 +  62. See 
the previous problem.

4. The equation (ax +  by -f- c) ±  (axx +  bxy cx) =  0 ex­
presses the equality of distances of the point (x , y) from the given 
lines.

5. If the initial straight lines are given by the equations in 
the normal form

axx bxy -f- cx =  0, a2x -f- b2y -f- c2 =  0,

then the equation of the locus of points will be
(axx -j- bxy cx) X +  (a2x -J- b2y -{- 2̂) p, =  0.

It is linear and therefore the locus of points is a straight line.

Sec. 2-6

1. See Exercise 4 of Sec. 2-4.
2. axx +  byx -|- c =  — (ax2 -|- by2 +  c) and a (y2 — yx) — 

— b (x2 — xx) =  0. The first condition expresses the fact that the 
points are situated on different sides of the straight line and are 
equidistant from it. The second condition expresses the location 
of the points on a straight line which is perpendicular to the given 
one.

3. The straight line is given by the following equation

(* — *0) — A- (v — Vv) =  0 .
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The parameter X is determined from the condition
( * i  —  X 0) —  I  ( Ih  —  J/o) =  ±  {(xz — x 0) —  X (j/2 —  lj0)).

The choice of the sign depends on how the points are situated: on 
one side or on both sides of the line.

4. Subtracting the first row of the determinant from its other 
two rows and expanding the determinant, we get

x2
Vi
y 2
V3

1
1
1

=  (*2 — * l)  (^3 —  ̂ l) —  (»2 — */l) (*3 — *l)»

The fact that the right-hand side is equal to zero means that the 
point (x2, y2) lies on the straight line

( x  — xt) ( i/ 3 — i/i) — (y — Vi) {x3 — x±) =  0, 
joining the points ( ,r l5 y j ,  (x 3j y 3) .

Sec. 2-7
1.

«z +  by +  C) x =  ±  — , j/rt2 +  fc2
M •— bx -|- ay H~ c2
V ~ Y'a* + b*

The choice of signs depends on the direction of the xf- and i/'-axes.
2.

z+y 
/ 2  ’ y = :£ x—y 

/ 2  ‘
The equation of the curve in the new coordinates:

2 x'y' =  a2.
3. The point (.t0, y0) has the same coordinates x0, y0 in the 

new system. Therefore, x0, y0 are obtained by solving the following 
system of equations:

x 0 ^  a xx 0 - j -  &1 I/ 0  ch  Vo ~  a 2x o b 2yq  - j -  c 2 ‘

Chapter 3
Sec. 3-1

1. Taking the general equation of the circle in rectangular 
Cartesian coordinates, pass over to the polar coordinates, substi­
tuting x =  p cos 0, y — p sin 0. To obtain the coordinates of the 
centre and the radius of the circle given by an equation in polar 
coordinates pass over to the rectangular Cartesian coordinates. 
We get

x2 y2 +  2a (x cos a  — y sin a) +  b =  0.
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The coordinates of the centre: x =  —a cos a, y =  a sin a. The 
radius: R =  yr a2 — b. Tho coordinates of the centre in polar 
coordinates: p =  fl, 0 = = n  — a.

2. The distance between the points A (pl5 0X) and B (p2, 02) can 
be found by the law of cosines as applied to the triangle <9.45. 
We get

M ^ |a =  Pf +  Pa“  2PjP2 (02 — 0i)•
3. p0 is the distance from the pole to the straight line, a is the 

angle between the polar axis and the perpendicular dropped from 
the pole onto the straight line.

4. The equation of the cardioid in polar coordinates:
p =  5  (1 — cos 0).

5. The equation of the lemniscate of Bernoulli:

p =  a 1/̂ 2 cos 20, 
where a is half the distance between the foci.

Sec. 3-2

1. The equation of tho curve can be written in the form
__ Xp 

p—1 + A.COS0'’
where

%= Y a 2 +  b2, p =  c/ Y 0' =  0 +  a.
This form is taken by the equation of the curve if the polar axis is 
turned through an angle a. It is seen from this equation that the 
curve is a conic section.

2. Since the position of the polar axis is not specified, the 
equation of the ellipse has the form

_ Xp
 ̂ 1 +  X cos (0 +  a) ‘

Substituting the coordinates of the three given points of the ellipse 
in this equation, we get a system of equations for determining the 
unknowns a, X and p.

3. Checked directly.
4. The equation of parabola:

_ e
 ̂ 1 — cos 0 •

The inversion with respect to the pole of a polar coordinate 
system is given by the formulas

R2
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This transformation of the parabola yields a curve represented by 
the equation

p' =  (R2/e) (1 -  cos G'),
which is a cardioid.

Sec. 3-3

1. That the curve is a conic section follows from the definition, 
since (x — x0)2 -[- (y — y0)2 is a square of the distance of the point 
(x, y) on the curve from the focus (.r0, y0), and ax -f- by +  c is pro­
portional to the distance of the point (x , y) from the directrix. 
The curve is an ellipse, parabola, or hyperbola depending on the

magnitude of Ar/j/"a2 -|- 62=  1*
2. The distance of a point on the conic section from the focus 

is proportional to its distance from the directrix. The distance 
from the directrix, as the distance from a straight line, is linearly 
expressed in terms of the coordinates of the point.

3. The problem of the intersection of a conic section with a 
straight line is reduced to solving a quadratic equation which 
cannot have more than two roots.

4. See Exercise 4 of Sec. 1-4.
5. See Exercise 5 of Sec. 1-4.
6. Let A (x, y) be a point of the locus. Its distances from the 

centres of the given circles will be | R +  Rx |, | R ±  R 2 |, where
and R 2 are the radii of the given circles, and R is the radius 

of the circle which touches them. The signs (-)- or —) depend on 
whether the touching is internal or external. In any case either 
the sum, or the difference of the distances is constant. The locus 
of points represents an ellipse, a hyperbola, or a straight line. 
If one of the circles degenerates into a straight line, the locus of 
points is a parabola.

Sec. 3-4

1. Let

be the equation of the ellipse (a is the semi-major axis). Let us turn
the xy-plane about the z-axis through an angle a, cos a =  — .a
Then the circle x'2 -f- y'2 =  a2 in this plane is orthogonally pro­
jected into the given ellipse.

2. The equation of the hyperbola can be written in the form
x . y x y
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—+ - r  =  0, —— =  0 are the equations of its asymptotes. a 1 b a b
For the point (x, y) of the hyperbola the factors in the left-hand 
member of its equation are proportional to the distances of this 
point from the asymptotes.

3. See the preceding problem.
4. Divide the segments AC and CD into n equal parts. Let Am 

and Cm be the points of division with number m. Find the coordi­
nates x , y of the point of intersection of the lines A mB and CmA , 
taking the line AB for the x-axis and the mid-point of the segment 
AB for the origin. Eliminating the parameter min, show that the 
points (x, y) satisfy the equation of the ellipse.

5. Make use of the hints to the preceding problem.

Sec. 3-5

1. The equation of the asymptotes of the hyperbola:

The equation of the tangent line:

Wo __ a 
a2 b2 ~~

Find the points of intersection of the tangent with the asymptotes. 
Eliminating y, we get a quadratic equation for x

b2x%
yfc* a2 * y%

or, noting that
i _ b2

we have
a2 y W y W  ’

x2 — 2x0x -f- a2 =  0.

Hence, it is seen that the product of the abscissas of the points 
of intersection of the tangent with the asymptotes is xtx2 — <z2, 
and the area of the triangle

5 =  4" ( — ) ( - ^ _ ) s in 2 a ,2 Vcosa/ \c o s a /

where a is the angle formed by the asymptotes with the x-axis,
2. Eliminating y from the equations, we get a quadratic equa­

tion for x. The condition of touching consists in that the equation 
has a multiple root, i.e. the discriminant of the equation is equal 
to zero. The discriminant of the equation represents a quadratic 
trinomial with respect to X. For the tangent lines to intersect at
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right angles in the point (#0, y0), it is necessary that X2X± =  — 1. 
Therefore, equaling the constant term of the reduced equation for 
X to —1, we obtain the equation of the required locus. It turns out 
to be a circle.

3. Make use of the reasonings which helped to solve the preced­
ing problem.

4. The equation of the pair of tangent lines to the ellipse:

5. The abscissa of the mid-point of the segment with the ends 
at the point of intersection of the tangent line with the asymptotes 
is equal to x0. Indeed, the abscissas of the points of intersection 
are the roots of the equation

x2 — 2x0x a2 =  0.

Hence, (x± -f- x2)/2 =  x0 (see the solution of Exercise 1 of this 
section).

Sec. 3-6

1. Find the coordinates of the focus according to the geometrical 
construction. Make sure that

c =  Y a-2—
2. The proof is analogous to the proof of the optical property 

of the ellipse.
3. The equation of the parabola can be written in the form

(x — c)2 d- ys =  (ax -f- b)2,

where c is the coordinate of the focus, and ax -|- b =  0 is the 
equation of the directrix. Identifying this equation with the ca­
nonical equation y3 — 2px =  0, find c, a, and b.

4. See the solution of the previous problem.
5. Find the coordinates of the foci and make sure that they are 

independent of X.
6. The equation with respect to X

4  , 4   a

for any non-zero x0, y 0 has two real roots Xlt X2: —a2 <  X1 <  
<  — b'2, <  X2. To them there correspond an ellipse and a hyperbola 
passing through the point (.t0, y 0).

7. We have
4  | 4 ^ 1  4  , 4  = 1

a? -)— ^~\~X2 b -̂\~X2
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Subtracting these equalities termwise, we get
______ *o_______|_______ yl______ 0
(aH-X,)(a2-|-^) ^  (62 +  ̂ )(62 +  \ 2)

which is the perpendicularity condition for the tangent lines
xxo | wq __a | yy o___a

cfi + K b* + %! “  ’ ai + 'k2 ^  b2 + X2

Sec. 3-7

1. The slope of the diameter drawn through the point of tan- 
gency k' =  —b*/a2k.

2. The direction of the diameter drawn through Ihe point 
(x0, Vo) is conjugate to the direction of the chord.

3. See Sec. 1-5. The conjugate directions correspond to the 
values of the parameter t differing by the angle jt/2.

4. When projecting with a pencil of straight lines, parallel 
lines turn into parallel iines and the mid-point of a line segment 
turns into the mid-point of the segment. The conjugate diameters 
in a circle are perpendicular. The area S of_a figure and the area 
of its projection S are related as follows: S =  S cos oc, where a  
is the angle between the plane of the figure and the plane of pro­
jection.

5. See the hint to Exercise 4.
6. See the hint to Exercise 4.
7. Represent the ellipse as the projection of a circle.
8. Make use of the hint to Exercise 4. It is possible to inscribe 

a triangle in an ellipse so that the tangent line at each of its ver­
tices is parallel to the opposite side. Here one of the vertices may 
be taken arbitrarily.

Sec. 3-8

1. Expand the left-hand member of the equation into a product 
of linear factors.

2. The curve is situated inside the parallelogram defined by the 
intersection of the two bands:

I a.r-\-by +  c\ <  Y k ,

I a.T +  py-t-v K  Y k .
3. Take the bisectors of the angles formed by the straight lines 

ax -|- by -[- c =  0, ax -f- $y -|- y =  0 for the new coordinate axes.
4. The problem is reduced to the previous one by factoring the 

left-hand member of the equation into two linear co-factors.
5. See Sec. 1-6.
6. The second-order curve

ax2 -f- bxy +  cy2 -f- dx -f- eV =  0
1 5 - 0 4 0 6
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allows a parametric representation
d-\- et dt-\-et2

x — ----- , i ,  , , a , y ~ ------- ■ , , ,  . o ' (Exercise 5 of Sec. 1-5)

Then see Sec. 1-6.
7. See Sec. 1-6.
8. For the points A t both terms of the left-hand member of the 

equation vanish. Take an arbitrary point A 0 on the curve y at which 
<*34a 26a i5 ¥* 0. Put

% =  a24al6a35 
a34a26ai5 A 0 *

9. Make use of Exercise 8.

Chapter 4
Sec. 4-1

1. When all the vectors arc turned through an angle of 2jt/n, 
their sum is also turned through the same angle. But as a result of 
this rotation the system of vectors transforms into itself. Therefore 
the sum is equal to zero.

2. For the point of intersection of the medians (6>0)

Ô A + Ô B + (\C=0.
For any other point 0  this sum is equal to 3OO0,

3. The equality expresses a well-known theorem of elementary 
geometry. The sum of the squares of the diagonals of a parallelo­
gram is equal to the sum of the squares of its sides.

4. Check directly.
5. The sum of vectors emanating from a point of the plane a  

and directed in one half-space relative to this plane is a vector 
directed in the same half-space.

6. The system of vectors r'mn with a common origin at point 
(0, 0) and the terminal points at point x (m6, nd) is situated sym­
metrically about the point (0, 0).

7. For the origin the sum of the vectors is equal to zero due 
to the symmetry of the system of the vectors. For any other point O'
it is equal to nO'O, where n is the number of vectors.

Sec. 4r*>

1. If rx and r2 are non-zero and non-parallel vectors, then the 
sum +  X-2r2 is equal to zero if and only if ^  =  0, X2 =  0-

2. Represent one of the vectors in the form of a linear combi­
nation of two others.

3. Construct a triangle in which one side is represented by the 
vector r, and two other sides are parallel to the vectors and r 2.
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Sec. 4-3
1. Multiply the vector equality scalavly by the vector A 1A 2 

and the vector perpendicular to it.
2. -1- 2k\i («&) -f- p2̂ 2 =  (ka -|-
3. Any three vectors parallel to one plane are linearly depen­

dent, i.e. there exist numbers kx, k2, k3 not all equal to zero, 
such that

k +  k2r2 +  k3r 3 =  0 (see Exercise 3 of Sec. 4-2).

Multiplying this equality scalarly by r 2, r3, we get
^1 (*V’l) +  ̂ 2 (?'lr 2) "I" 3̂ (^1 3̂) =  M  
1̂ (*V’l) +  ̂ 2 (*Va)+^3 (*V’3) =  °» f

K  (*V‘i) +  k2 (r*r2) +  k3 (r3r 3) =  0. J
This system of equations with respect to l̂5 k2, k3 has a non-trivial 
solution. Therefore the determinant of the system is equal to zero.

4. See the hint to Exercise 3.
5. See the hint to Exercise 3.
6. See Exercise 5.

Sec. 4-4

1. The vectors a X b and c are parallel.
2. The vectors (a X b) X c and b (ac) are equal by absolute 

value and are in the same direction.
3. Represent the vector a in the form of a sum of two vectors 

one of which is parallel and the other is perpendicular to c.
4. Use the results of the three previous exercises.
5. If a , b, c are vectors with a common origin at the vertex of 

the pyramid and whose terminal points are at the vertices of its 
base, then

5 =  —  | ( « - 6 ) X ( a - c ) | .

Sec. 4-5

1. (a X b) X c =  b (ac) — a (be). See Exercise 4 of Sec. 4-4.
2. Take for a , b , c the vectors with a common origin at the 

centre of the sphere and whose terminal points are at the vertices 
of the spherical triangle.

3. Use the formula of Exercise 4 of Sec. 4-4.
4. Use the identity

(a X b) X (c X d) +  (c X d) X (a X 6) =  0.
5. The vector /* allows the representation r  =  k^  -|- k2e2 -f- 

4- k3e3. Determine klf k2, k3, multiplying scalarly this equality 
by the vectors ex X e2, e 2 X e3, e3 X ev
15*
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6. See Exercise 5.
7. The vectors ex X e2, e2 X e3, e3 X ex are linearly indepen­

dent. Represent the vector r  in the form
r =  K  (<Jz X e3) -|- X2 (e3 X ex) -|- %3 (ex X e2).

Multiplying this equality scalarly by elt e2, e3 lind k2, a3.
8. Represent the solution in the form

x — Xx (b X c) +  ^2 (c X a) X3 (a X b).
Multiplying* this equality scalarly by a> 6, c find X2, X3.

Sec. 4-6

1. See Exercise 5 of Sec. 4-5.
2. See Exercise 7 of Sec. 4-5.
4. Use the identity of Exercise 3 of Sec. 4-5.
5. Use the identity of Exercise 3.
6 . Use the identities of Exercises 4 and 3.

Chapter 5
Sec. 5-1

1. (a) The points for which x =  0 lie in the coordinate plane 
passing through the y- and z-axes; (d) the points for which x =  0 
and y =  0 lie on the z-axis.

2. Eight points.
3. The points are situated inside a parallelepiped bounded by 

the planes x =  +a , y =  + 6, z =  ±c,
4. The coordinates of the vertices of the parallelepiped (e^ e2, e3), 

where ex, e2, £3 take on the values 1 or 0.
5. If the point A (x, y, z) when rotated through an angle of 

jt/2  is carried into the point A ' (x'y 1/,  z'), then

{OA-e) e +  C&X e =  OA', e =  OA0l \OA0 \.
6. See Exercise 5. In the case of an arbitrary angle of rotation a

(OA *e) e OA cos a -|- (OA X e) sin a  — OA'.

Sec. 5-2

1. The square of the distance between the points A (x, y, z) 
and A' (x y', z')
(AA ')2 =  {(x — x') ex -\- (y — 1/') ey +  (z — z') ez}2 =

=  (x — x*)2 a- (y — u')2 +  (z — z')2 +
+  2 (x — a:') (y — y') cos y +  2 (y — y') (z — z') cos a +

-|- 2 (z — z') (x — x') cos p.
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2. The centre of the circumscribed sphere is equidistant from 
the vertices of the tetrahedron.

3. The coordinates of the mid-points of the line segments joining 
the mid-points of any two opposite edges of the tetrahedron:

„ _ x1-\-x2 + x3 + x4:
4 ’

____ 0 l  +  ^ 2 + y 8 ~ K V 4
4

Zl + Z2 +  Z3 + Z4
* = ----------4-----------’

4. The straight lines intersect at the centroid of the tetrahedron.
5. A point with the coordinates x , y, z lies on one side with any 

vertex relative to the plane containing the opposite face.
6. If the vertices of the triangle are A x, A 2, A 3, then

s  =  - L i a a 2 x a ?a 3 i.

7. Show that by means of elementary transformations the 
determinants

j : 2 *^ i y2  yi  z2 zi
^3— î y3 yi zs zi
£4 4̂ Z/l Z4 Z 1

X1 y 1 Z1 1
x2 y  2 Z2 1

x3 ! /3 Z3 1

x4 */4 Z4 1

can be converted into each other.
8. See Exercise 7.

Sec. 5-3

1. The equation can be written in the equivalent form 
(x +  a)2 -1- (y +  b)2 -1- (z +  c)2 — a2 b2 c2 — d\

the coordinates of the centre: —a> —b, —c\ the radius of the sphere: 
(a2 -|- b2 +  c2 — d)1/2.

2. The coordinates of any point satisfying the equations /i =  0 
and / 2 =  0 also satisfy the equation

1̂/1 +  2̂/2 “  0*
3. The surface is generated by straight lines which are parallel 

to the z-axis and intersect the a;z/-plane along the curve specified 
by the equation <p (x , y) =  0 .

4. The equation of the cone:
z2 =  (x2 4 - y2 -f- z2) cos2 a, 

where a is the angle between the generatrix and the axis.
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5. The curves yx and y2 can be specified by equa lions in para­
metric form:

yx : x =  u, y ~  0, z ~  au2y 
y2 : x =  0, y =  v, z =  bv2.

The surface generated by the inid-point of the line segment with 
the end-points on yx and y2 is represented by the equations:

u v au2A~bv2
* =  T >  1J =  ~2 ’ z = ------2------- •

6. The curves can be represented parametrically:

Yi ' x =  u, y =  a, z =  f (u);
y2 : x =  uy y =  b, z =  <p (u).

The equation of the surface:

x — u, y =  (1 — v) a +  vby z =  (1 — y) f (u) -|- i*p (u).

1, Y  x2 y2 is the distance of the point on the surface from 
the z-axis.

8. This is a cylindrical surface with the generatrix parallel 
to the 2-axis. It passes through the curve, since the equation of the 
surface can be written in the equivalent form

(/ (z) — z) — (<P (y) — z) =  0.

Hence it is seen that a point which satisfies the equations z =  f (x)
and z — cp (y), satisfies also the equation f [x) — cp (y) =  0.

Sec* 5-4

1.
x’ =  axx A- h lJ +  ci» 
if =  a2x -|- b2y +  c2,
Z* =  2 .

2.

cos a = '
y  a22a%s

c o s  p
V  a 33rtl l

cos y f l T2

Y a 11«2
See Exercise 1 of Sec. 5-2.

3. See Exercises 5 and 7 of Sec. 4-5.
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Chapter 6 
See. 6-1

1. An arbitrary point of the plane is equidistant from the points
Uii î) «md (#2» 2̂)*

2. The system of equations
ax —(- by cz dj =  0, 
ax+by-\-cz +  d 2 =  0, dx d2i )

has no solution. Therefore the planes do not intersect.
3. The locus consists of two planes

ax —|— by -j-* cz —J— d 1 ~ (ax —j— Qy —f~ yz —|— 6) — 0.

4. Any solution of the system of equations
f(x, y y z) +  a1x + b 1y + c 1z +  d1 =  0,'l 
f (x , ijy z) +  a2x +  b2y +  c2z +  d2 =  0 ) 

is a solution of the equation
(â x -|- b̂ y -j- ĉ z -j- d ( o - ^ x  -{- b2y -j- c2z -j- d2) =  0.

5. For k =7̂  %d -j- p.6 the system of equations specifying the 
planes is incompatible.

6. See Exercise 4.
7. See Exercises 6 and 7 of Sec. 2-1.
8. The equation of any plane passing through the line of inter­

section of the two given planes is written in the form
(ax -{- by cz -{- d) (axQ -j- Y2o

— (ax +  py +  yz +  6) (ax0 -f- by0 4 - cz0 +  d) — 0 ,

where (x0, y0l z0) is an arbitrary point outside the line of inter­
section.

9. See Exercise 8 of Sec. 5-2.

Sec. 6-2

1. The plane intersects the positive semi-axis x (yy z) if dla <  0 
(d/b < 0 , die <  0, respectively).

2. The volume of the tetrahedron:

3. The set of points in space satisfying the condition

I * I +  I y I +  I z I <  ffi 
is the intersection (the common portion) of the half-spaces specified 
by the inequalities

■jrx ±  y +  z <  a.
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4. The plane symmetrical to the plane a about the zy-plane is 
specified by the equation

ax by — cz d =  0.
The plane symmetrical to the plane a about the origin is given by 
the equation

—ax — by — cz -f- d ~  0.

5. A plane parallel to the 2-axis has no z in its equation. Con­
sequently, the parameter X is determined from the condition 
c -j- yX =  0 .

6. The parameters X and \x are determined from the conditions
-|- Xa2 ~f- “ 0, bx -j- Xb2 -|- [4,63 =  0.

Sec. 6-3

1. The distance between the planes
— I dj d2 I

b2 +  c2' *
See Exercise 2 of Sec. 2-5.

2 .  » - , wY  a* -)- b2
3. If the planes are given by equations in the normal form 
axx +  bxy -\- cxz +  dx =  0, a2x -|- b2y c2z d2 =  0,

then the locus of points is represented by the equation
axx -j- bxy -j- cxz -f- dx +  X (a2x -|- b2y c2z -{- d2) — 0,

hence, it consists of two planes.
4. See Exercise 1.
5. Pass over to the normal form of the equation of a plane.
6. See Exercise 1 of Sec. 2-5.
7. If the equations of the planes are reduced to the normal form, 

then
± x' =  axx -f- bxy cxz -|- dx,
± 1/  =  a2x -(- b2y +  c2z +  d2t 
± 2  =  a ^ x  - | -  b t f j  - j-  c 32 d g .

Sec. 6-4

1. The vector (a, 6, c) is perpendicular to the plane. The angle a 
formed by the plane with the a;-axis is determined from the con­
dition

I a Isin a
Y  a2 +  b2 +  c2
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2. The angle formed by the plane with the a^-plano in dolor* 
mined from the condition

cos a = V l-|-P 2 +  <72
3. See Exercise 2.
4 . The plane intersects the x- and y-axes at equal angle* If 

\ a \  =  \ b \ .
5. The plane specified by the equation a (x — x0) +  b (// -  //„)

+  c (z — zQ) =  0 passes through the point (a;0, j/0, z0). The |umi 
lelisin condition of planes is fulfilled.

6. The plane given by the equation

-0 ,

vector

X  — ‘ x 0 <v —  y o Z —  Z,

a l h Cl

b2 C2

lie point (a:0, z/0, z0) am

b i Cl c i  a i

C2
J

C2 a 2
» bn )•

7. The parameters A. and p obey the condition 8
(Afli -f- pfl2) u -f- (A&i p^a) b -{- (Acq pc2) c =  0.

8. For any vector n (a, 6, c) there can be found a piano with 
the normal n in the pencil of planes. To this end it is necessary In 
take the parameters A2, A3 satisfying the conditions

^1̂ 1 ~\~ A3&3 _ Aqfol A2&2 ~H Agfr.g_
a b

_AjCq ~h A2C2 4~ A3C3
C

Sec. 6-5
1. The straight line intersects the z-axis (y- or z-axes) if -y-

=  —  ( ■—* =  —  » 4 ^ = 4 ^ , respectively). The line is para I Ini m \ k m k I }
in the plane xy (yz, or zx, correspondingly) if m =  0 (k =  0, I ■ 0,
respectively).

2. Form the equation of the locus of points, taking the equations 
of the planes in the normal form.

3. The locus of points equidistant from two vertices of the 
triangle is a plane. The required locus is the intersection of two 
planes, i.e. a straight line.

4. The straight line specified by the intersection of the piano 
y =  A, z =  aXx lies on the surface, since the points of this lino 
satisfy the equation of the surface. The straight line specified by 
the equations x =  p, z =  a\ay also lies on the surface.
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5. The fact that the determinant is equal to zero is the con­
dition of compatibility of the system of equations

«i«+6iy +  c12 +  ̂ 1 = 0» i
b2y ~h c^z-f d2=  0, I 

V + &3Z/+C3Z +  ̂ 3=°» [
a±x +  b±y -f- c4z +  d4 =  0. J 

This system is compatible, since the straight lines intersect.

Sec. 6-6

1. The vanishing of the determinant means that the vectors
{x' — x , if — i", zf — z"), (kf, V, m'), (/c", I", m )

are parallel to the plane. Hence, the straight lines are either paral­
lel, or intersect.

2. If A ’ and A" are the points on the skew lines and e', e" are 
the vectors indicating the directions of the lines, then the distance 
between the skew lines is

8 = e' xe" 
\e'xe" |

A7^" (e'e"A'A*)
I e' X  e" | ’

3. The vector indicating the direction of the line given by the 
equations

a1x + b 1y-\-c1z-j-d1 =  Ot |  
a2x +  b2y +  c2z +  dz =  Q, /

has the coordinates
h Cl *1
h C2 > c2 a2

4. See Exercise 3.
5. The equation of the conical surface:

[(x—g0) a-\- (y—y0) b +  (z — zQ) cJ2 __ 
a* +  b2 +  c* “

=  [(x — x0)2 +  (y — y0)2 6 7 8 +  (z — z0)2] sin2 a .
6. See Exercise 3.
7. Let A (x , y, z) be a point on the conical surface different from 

the vertex. Find the coordinates of the point of intersection of the 
element passing through the point A with the plane ax by +  
+  c.z -|- d =  0 . Substituting these coordinates in the equation of 
the sphere x2 +  y2 -f z2 =  2Rz, we obtain the equation of the 
required conical surface. The intersection of the conical surface 
with the xy-plane is a circle.

8. See Exercise 7.
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Sec. 6-7

1. I! the straight lines arc given by the equations

x — x' y — y' z— z* x — x"__ y — y"  z — z"
m ’ * k" ~~ V ~  m” ’

then the plane equidistant from them passes through the point 
with the coordinates

x' +  x" y '+ u "  z '+ z"
2 ’  2 9 2

parallel to the vectors (kr, Z', wi'), (7c", Z", m").
2. The plane specified by the equation

a- x̂-J- b±y-(- c-fi-f- d-±   a2X-\~ 2̂ll 1 *̂2̂  i 2̂
<2ia:o~l' îZ/o-hciZo''l~d1 2̂̂ 0 bzVo ~h c2zo~h 2̂ ’

passes through the given line and the point (x0, z/0, z0), not lying 
on this line.

3. The vector (x' — x0, y ' — y0, z' — z0) X (ft, Z, m) is per­
pendicular to the required plane.

4. Any straight line intersecting the two given lines can be 
represented as the intersection of two planes one of which passes 
through the first line and the other through the second.

5. The surface specified by the equation of the form q) y_
z ) -

=  0 is generated by the straight lines passing through the origin, 
since, along with the point (x, y , z), any point (kx, ky, kz) satisfies 
the equation. The surface intersects the plane z =  1 along the 
curve <p (x, y) =  0.

Chapter 7
Sec. 7-2

1. The surface z == a-̂ x̂  — Qa^xy — J-* ^22̂ /̂  “ 2fl̂ r̂ 2a %y —J— a 
represents an elliptic paraboloid (hyperbolic paraboloid, parabolic 
cylinder).

2. The left-hand member of the equation is factored into a 
product of two linear co-factors.

3. The equation thus obtained is satisfied by the coordinates 
of the points on the curve along which the plane intersects the 
surface.

4. See Exercise 3.
5. Form the equation o)‘ the conical surface, taking the given 

point for the origin and the plane containing the curve for the 
plane z =  const. See Exercise 5 of Sec. 6-7.
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6. The coordinates of the common points of the surfaces satisfy 
the equation /  (x, y, z) (p (x0i yQ, z0) — 9  (x, y, z) f (a:0, y0, z0) =  0. 
The point (x0, y0, z0) also satisfies it.

7. The equation of the surface is a corollary of the equations 
of the straight lines. It is obtained by eliminating the parameter 
X from them.

8. A second-degree surface. See Exercise 7.

Sec. 7-3

1. The foci are found on the z-axis at a distance - / c2 — a2 
from the origin.

2. The intersection of the ellipsoid with the plane is at the 
same time the intersection of these planes with the sphere x2 y2 -f
- f -  Z2  +  JLl =  0 .

3. The required points in space are situated inside the ellipsoid

___L.S__l _ — 1

4. Eliminate the parameters it, v and pass over to the equation 
of the surface represented in the implicit form.

5. The surface in question is an ellipsoid. Make use of the 
boundedness of the surface.

Sec. 7-4

1. See Exercise 2 of Sec. 7-3.
2. See Exercise 5 of Sec. 3-6.

Sec. 7-5

1. The focus of the paraboloid coincides with the focus of the 
parabola z =  y2la2 in the i/z-plane.

2. Consider the projection of the section on the xy-plane. See 
Exercise 2 of Sec. 7-3,

Sec. 7-6

1. Make use of the fact that the vectors (X, p, v) and (x, y, z) 
form an angle a.

2. If A is the projection of the point A (x, y, z) on the line
, then (OA)2 +  R2 =  (OA)2. Express | OA | inA |A V

terms of the triple scalar product of the vectors (X, p, v) and (x, y, z).



231Answers to Exercises, Hints and Solutions

Sec. 7-7

1. Consider the projection of the line of intersection on the 
#y-plane. See Exercise 3 of Sec. 7-2.

2. The first family: x =  X, z =  ahj. The second family: y =  jli, 
z — a\ix.

3. A hyperbolic paraboloid.

Chapter 8 
Sec. 8-1

1. If the linear co-factors are independent, then introduce new 
variables

Xj  —  ^1*^1 “j“  ^ 2^2 I” ~f“ ^4*^4>

^2 —  ^1*^1 +  “h  4 X 3 +  ^4‘Z'4»

X$ #3? £4 ■ £4.
The discriminant of the transformed form is obviously equal to 
zero.

2. In the case of independent linear forms

2 2 b t x u  2 C i X i y 2 d t X i

introduce new variables

—  2  a ix U x 2 =  2  b ix ii 4 = 2  Cixi* * 4 5=8 2

Sec. 8-2

1. I x =  a +  c, I 2 =  ac — b2, I 3 =  0 , / 4 =  acy2.
2. Introduce new coordinates, taking the plane ax -f- by +  

+  cz =  0 for the coordinate plane.

Sec. 8-3

1. The condition of decomposition of the curve: | atj 4 - %btj \ =  
=  0. For the points of intersection of the curves both terms of the 
left-hand member of the equation of the curve are equal to zero.

2. Choose the parameter % so that the equation
a0t/2 +  atxy a**2 +  azx +  #4 +■  ̂ (V ~  *2) =  0

is decomposed into a product of two linear co-factors.

3. a = h

4i

h
2 ( / ^ ) 3 * 
2/3
/ i /2 *4. a =  | /  1 2 6
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S e c . 8 -4

1. T a k e  Iho b ise c to r  p la n e s  lo r  llie  p la n e s

a x  -|— b y  -J— cz  -|— d  =  0 , a-yx -[- b^y -[— CyZ —[— dy == 0

for  th e  c o o r d in a te  p la n e s .
2 . F in d  J 4 for  th e  c a n o n ic a l  e q u a t io n s  o f  th e  su rfa ces .
3 . F in d  / 4 an d  I 3 for th e  c a n o n ic a l  e q u a t io n s  o f  th e  su rfa ces .

S e c .^ 8 -5

1. T h e  o r ig in  sa t is f ie s  th e  e q u a t io n s  F %, =  F y , — 0 . T h erefore  
a la =  a 2 3  =  0 . T h e  c o n s ta n t  te rm  o f the e q u a t io n  a 33 is  d e ter ­
m in e d  b y  c o m p a r in g  th e  in v a r ia n ts  I 3 =  I 3. T he c o e ff ic ie n ts  a f j  for  
i, /  <  2  are e q u a l to  a t j .

2 . S ee  E x e r c ise  1.

S e c . 8 -6

1. T a k e  th e  p la n e  a x  -f- b y  +  cz  =  0 for  a c o o r d in a te  p la n e .  
T h e a x is  o f  th e  co n e  i s  p e r p e n d ic u la r  to  t h is  p la n e .

2 . T h e  d ia m e te r s  o f  th e  p a r a b o la  are p a r a lle l  to  th e  s tr a ig h t  
l in e  a x  - 1- b y  - |-  c =  0 . T h e a x is  o f  th e  p a r a b o la  is  c o n ju g a te  to  
the  d ir e c t io n  a : b.

S ec . 8 -7

1. T h e  a sy m p to te s :  a x  -f- b y  c =  0 ,  a t x  -j- b t y  - |- cx =  0 .
2 . T h e a sy m p to te s :  X ( a x  -f- b y  +  c) ±  j / — Xy, (a±x  +  b2y -[-

+  ci) = °-
S e c . 8 -8

1. U se  th e  c a n o n ic a l  form  o f th e  e q u a t io n  o f  th e  su rfa ce .
2 . S ee  S ec . 3 -5 .
3 . S ee  E x e r c is e  2 .
4 . S ee  E x e r c is e  4  o f  S e c . 3 -5 .
5 . T h e se  s tr a ig h t  l in e s  are r e c t il in e a r  g e n e r a tr ic e s .
6 . S ee  E x e r c is e  7 o f  S e c . 3 -6 .

Chapter 9 
S e c . 9-1

1 . T h e  fo r m u la s  o f  th e  o r th o g o n a l tr a n sfo r m a tio n  u n d e r  w h ic h  
th e  a y -p la n e  g o e s  in to  it s e lf :

x  =  a ^ x  -[- a 12y  - |-  a14, y  =  a 2i x  - |-  a 22y  a %\-> z ' =  z >

a l l  a i l  =  f  j a l2 +  a 22 ~  a l l a 12  +  a 21a 22 =  9 .

2. T h e c o e ff ic ie n ts  au , a 2lJ a 31 are p r o p o r t io n a l to  X, p,, v;
ff14 =  f l24 =  a 34 ~  9 .
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Sec. 9-2

1. The formulas of the affine transformation:
x' =  (x2 — xx) x +  (x3 — x j  y -1- (*4 — xx) z,

y' — yi + (v* — yi) x +  ( y »  —  yi) v +  (y4 —  y\)
z' =  Zi (z2 — Zi) x (z8 z1) y -\- (z4 Zj) z.

2. Solve the equations Xx =  ax' -j- by' 4 - c> \XV ~  4"
4 - &1*/' +  ci with respect to x' and y'.

Sec. 9-3

1. The #y-plane goes into the plane

x '  =  a x l U  - j -  a 12v  “h  a 14> V ' “  f l21W H~ a 22V +  a 24» 

Z =  # 3 “i“  #34*»

u, v are parameters.
2. The #-axis goes into the line x' — au t 4- <z14) y' =  ff21f 4 - 

4“ 2̂4) z — #31̂  —|— C34) t parameter.

Sec. 9-4

1. Any three points not lying on a straight line can be carried 
by the affine transformation into any three points not lying on a 
straight line.

2. It is sufficient to carry three vertices of the parallelogram 
into three vertices of a square which is always possible. Not any 
quadrilateral can be transformed into a square by the al'fine trans­
formation. The opposite sides of a quadrilateral must be parallel.

3. The system of equations must be compatible

X  =  a 14X 4 “ f l 1 2 y "1” alZz +  fl14> y  ~  a21X f l 2 2 y a 23Z “b  a 24>

z  —  a z \ x  4 "  a Z2,y +  a ZZZ +  a 34*

Sec. 9-5

1. The affine transformation preserves the conjugacy property.
2. The coefficients of stretching (compression) are equal to the 

semi-axes of the ellipse (a±x 4 - bxy 4 - ci)1 2 +  (a2x 4 - b2y 4 - c2)2 =  
= 1.

Sec. 9-6

1. The system of equations specifying projective transformation 
is uniquely resolvable to within a common factor with respect to 
the coefficients if four points and their images are specified.

2. Using the projective transformation, carry the points A, B , C 
into the points —1, 0, 1 on the ar-axis and express all anharmonic 
ratios in terms of the coordinate |  of the fourth point (D).
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Sec. 9-7

1. Solve the system with respect to x'u x2, x's 
A.]#! — axxx -|- bxx2-|- cxx3 ^
^*2X 2 ~  a 2X l~ \~  b 2X 2 -\~ CoX3 f

V '3 = ¥ i  +  W + ¥ 3 *  J
2. The straight lines intersect at point (kx, k2, k3l 0),

For the first curve
Sec. 9-8

xi axxx a2x2 -f- 3̂*̂3, x2 — bxxx -|- b2x2 -j- b3x3, x3 — ar3

For the second curve
2xx =  axxx a2x2 +  azxs (bxxx -|- b2x2 -|- b3z 3), t __
lx 2 =  axxx -{- a2x2 a3x3 — {bxxx b2x2 -j- b3x3)t

Sec. 9-9

1. Compute the anharmonic ratio by passing over to the homo­
geneous coordinates.

2. Using the projective transformation, carry the straight line 
BII into an infinitely distant line.

3. Make use of the properties of a complete quadrilateral. 
See Exercise 2.

4. Draw an arbitrary straight line through the point of tan- 
gency. The polar lines of the points of this straight line intersect 
on the required tangent line.

5. The polar lines of two points of the straight line intersect 
at the required pole.

6. Compare the equation of the polar of the curve given by 
the general equation with the equation of the polars of the vertices 
of a self-polar triangle.

7. See Exercise 1.
8. Take the equation of the conic section in the canonical form 

and form the equation of the polar line of the focus.

Sec. 9-10
1. The projective transformation

x, _  * , y
ax-\-by-\~c ’ ax-\-by-\~c

preserves the bundle with centre at the origin but transforms its 
secants.

2. Make use of the correlative transformation of the plane.

Union of Soviet Socialist Republics




	Front Cover
	Title Page
	Contents
	Introduction
	Chapter 1 Rectangular Cartesian Coordinates in a Plane
	Sec. 1-1. Introducing Coordinates in a Plane
	Sec. 1-2. The Distance Between Points
	Sec, 1-3. Dividing a Line Segment in a Given Ratio
	Sec. 1-4. The Notion of the Equation of a Curve. The Equation of a Circle
	Sec. 1-5. The Equation of a Curve Represented Parametrically
	Sec. 1-6. The Points of Intersection of Curves

	Chapter 2 The Straight Line
	Sec. 2-1. The General Equation of a Straight Line
	Sec. 2-2. Particular Cases of the Equation of a Straight Line
	Sec. 2-3. The Equation of a Straight Line in the Form Solved with Respect to y . The Angle Between Two Straight Lines
	Sec. 2-4. The Parallelism and Perpendicularity Conditions of Two Straight Lines
	Sec. 2-5. The Mutual Positions of a Straight Line and a Point. The Equation of a Straight Line in the Normal Form
	Sec. 2-6. Basic Problems on the Straight Line
	Sec. 2-7. Transformation of Coordinates

	Chapter 3 Conic Sections
	Sec. 3-1. Polar Coordinates
	Sec. 3-2. Conic Sections and Their Equations in Polar Coordinates
	Sec. 3-3. The Equations of Conic Sections in Rectangular Cartesian Coordinates in Canonical Form
	Sec. 3-4. Studying the Shape of Conic Sections
	Sec. 3-5. A Tangent Line to a Conic Section
	Sec. 3-6. The Focal Properties of Conic Sections
	Sec. 3-7. The Diameters of a Conic Section
	Sec. 3-8. Second-Order Curves (Quadric Curves)

	Chapter 4 Vectors
	Sec. 4-1. Addition and Subtraction of Vectors
	Sec. 4-2. Multiplication of a Vector by a Number
	Sec. 4-3. Scalar Product of Vectors
	Sec. 4-4. The Vector Product of Vectors
	Sec. 4-5. The Triple Product of Vectors
	Sec. 4-6. The Coordinates of a Vector Relative to a Given Basis

	Chapter 6 A Plane and a Straight Line
	Sec. 6-1. The Equation of a Plane
	Sec. 6-2. Special Cases of the Position of a Plane Relative to a Coordinate System
	Sec. 6-3. The Normal Form of the Equation of a Plane
	See. 6-4. Relative Position of Planes
	Sec. 6-5* Equations of the Straight Line
	Sec. 6-6. Relative Position of a Straight Line and a Plane, of Two Straight Lines
	Sec. 6-7. Basic Problems on the Straight Line and the Plane

	Chapter 7 Surfaces of the Second Order (Quadric Surfaces)
	Sec. 7-1. A Special System of Coordinates
	Sec. 7-2. Quadric Surfaces Classified
	Sec. 7-3. The Ellipsoid
	Sec. 7-4. Hyperboloids
	Sec. 7-5. Paraboloids
	Sec. 7-6. The Cone and Cylinders
	Sec. 7-7. Rectilinear Generators on Quadric Surfaces
	Sec, 7-8. Diameters and Diametral Planes of a Quadric Surface

	Chapter 8 Investigating Quadric Curves and Surfaces Specified by Equations of the General Form
	Sec. 8-1. Transformation of the Quadratic Form to New Variables
	Sec. 8-2. Invariants of the Equations of Quadric Curves and Surfaces with Reference to Transformation of Coordinates
	Sec, 8-3. Investigating a Quadric Curve by Its Equation in Arbitrary Coordinates
	Sec. 8-4. Investigating a Quadric Surface Specified by an Equation in Arbitrary Coordinates
	Sec. 8-5. Diameters of a Curve, Diametral Planes of a Surface. The Centre of a Curve and a Surface
	Sec. 8-6. Axes of Symmetry of a Curve. Planes of Symmetry of a Surface
	Sec. 8-7. The Asymptotes of a Hyperbola. The Asymptotic Cone of a Hyperboloid
	Sec. 8-8. A Tangent Line to a Curve. A Tangent Plane to a Surface

	Chapter 9 Linear Transformatio
	Sec. 9-1. Orthogonal Transformations
	Sec. 9-2. Affine Transformations
	Sec. 9-3. The Affine Transformation of a Straight Line and a Plane
	Sec. 9-4. The Principal Invariant of the Affine Transformation
	Sec. 9-5. Affine Transformations of Quadric Curves and Surfaces
	Sec. 9-6. Projective Transformations
	Sec. 9-7. Homogeneous Coordinates. Supplementing a Plane and a Space with Elements at Infinity.
	Sec. 9-8. The Projective Transformations of Quadric Curves and Surfaces
	Sec, 9-9. The Pole and PoJar
	Sec, 9-10. Tangential Coordinates

	Answers to the Exercises,Hints and Solutions
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Chapter 9




